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An approximate analysis of the effect of a noisy carrier reference on the per-
formance of sequential decoding is presented. The limitations of the analysis are
discussed and steps are described that could be taken to extend the performance
region over which the model used produces accurate, rather than merely bound-

ing, results.

l. Introduction

Convolutional encoding with sequential decoding is a
very powerful technique for communicating at low error
probability with deep space probes. It has been used
successfully with Pioneer 9 and 10, and is planned for
use on Helios. Most, if not all, of the performance data
for this coding technique have been developed without
regard to the effects of noisy reference signals in carrier
or subcarrier tracking loops. These effects must be known
with fair accuracy for the optimal design of telemetry
links with sequential decoding.

Il. Sequential Decoding—The Computation
Problem

The convolutional codes which are sequentially de-
coded typically have a large enough constraint length so
that the undetected error probability out of the decoder
is negligible compared to the probability that a block can-
not be successfully decoded in the time allowed. Thus,
the limiting factor for sequential decoding is the proba-
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bility that large amounts of computation are required to
decode a frame of the code, rather than the probability
of error. Experimental and theoretical work has shown
that the distribution of the number of computations ¢,
needed by the decoder to penetrate 1 bit deeper into the
convolutional code tree has a Pareto distribution

Pr{c, > x} ~ kx ¢ (1)

The exponent o is the noisy channel error exponent (Ref.
1), and k is a small constant, found by Heller (Ref. 2) to
be 1.9.

The computation distribution is somewhat changed
when an entire code frame is considered. The number of
computations needed by the decoder to penetrate from
a depth of N — 1 to a depth of N is certainly not inde-
pendent of the number of computations needed to pene-
trate from depth N to depth N + 1. However, the number
of computations needed to penetrate from depth N — 1
to depth N is independent of the number of computations
needed to penetrate from depth N +j — 1 to depth N +,
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if |j| is large enough. The magnitude |j| which is large
enough to establish independence is believed to be a
function of the signal-to-noise ratio (SNR). The Pareto
distribution has the property that for moderately large N,
the probability of a single long computation of length 2N

is much greater than the probability of two smaller com- _

putations, each of length approximately N. As a result,
whenever the number of computations needed to decode
a code frame is large, its distribution is dominated by
single long computations, representing decoder penetra-
tion from M — [ to M, for some M, l. Where the number
of computations is small, however, the distribution func-
tion represents the sum of many small computations. This
fact is important and will be used later.

Experimental distributions of the number of computa-
tions needed to decode the Pioneer 10 frame of 192-bit
length were developed at NASA Ames Research Center
(Ref. 3) and are reproduced here for convenience in
Fig. 1. A curve of decoder erasure probability vs. SNR
can be derived from this figure by projecting the curves
on the plane defined by a fixed number of computations
per frame.

INl. Carrier Loop Effects

The receivers of the DSN tracking stations use a nar-
rowband phase-locked loop, tracking the carrier compo-
nent of the signal received from the spacecraft, to provide
a coherent reference for demodulation of the telemetry
sidebands on that signal. The bandwidth of the phase-
locked loop is generally wide enough to track out re-
ceived doppler, yet narrow with respect to the telemetry
data rate, so that the phase of the reference signal is
essentially constant while several tens of bits are being
received. If, for reasons of received noise or otherwise, a
phase error ¢ exists between the received carrier and the
local carrier reference, the amplitude of the signal enter-
ing the decoder is degraded by a factor cos ¢ while that
phase error ¢ persists.

The probability distribution of the phase error ¢ in a
phase-locked loop has been derived elsewhere (Ref. 4)
to be

exp (pi, cos ¢)

PO = —5 1o (2)

where I(—) is the zeroth-order modified Bessel function
and py, is 2P./NW,.

Lindsey (Ref. 5) has used this phase error distribution
to derive performance curves for the biorthogonal block
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code which account for noise in the reference signal
under the (reasonable) assumption that the phase error ¢
is constant while a code block is being received. The
validity of this assumption depends merely upon the
bandwidth of the phase-locked loop being narrow with
respect to the rate at which code blocks are received. The
theoretical bit-error probability curves, which are func-
tions of bit SNR, can thus be considered functions of the
phase error ¢ that existed while each block was being
received, and of the bit SNR that would exist if the car-
rier reference were perfect. Averaging over the probabil-
ity distribution of phase error ¢ results in performance
curves which show the expected bit-error probability of
the coded system, and account correctly for the losses due
to a noisy carrier reference.

Heller and Jacobs (Ref. 6) have recently used the same
technique to estimate the performance of optimally de-
coded, short-constraint-length convolutional codes with
a noisy carrier reference. They argue that the averaging
over ¢ is valid whenever the phase error is relatively con-
stant over a period of time which is long with respect to
the constraint length of the code.

For block coding, the situation in which the phase error
¢ varies during a code frame has been approximately
analyzed by Tausworthe (Ref. 7), who developed a for-
mula for interpolation between performance with con-
stant phase (Ref. 5) and the performance expected with
very rapidly varying phase error. The interpolation pa-
rameter is a function of the time-bandwidth product for
the code-block integration time and the phase-locked-loop
bandwidth. This same interpolation formula should be
equally valid for short-constraint-length convolutional
codes if we could reliably define the “integration time”
of these codes.

For sequential decoding, if the phase error ¢ is essen-
tially constant over a frame of data, then it is clear that
we can average the erasure probability curves condi-
tioned on bit SNR (and ¢) over the distribution of phase
error, and derive a valid estimate of decoding perfor-
mance with a noisy reference. This condition, however,
requires that the phase-locked loop be extremely narrow
with respect to data rate, an unrealistic assumption which,
furthermore, does not appear to be necessary.

Let us consider the characteristics of the distribution
of the number of computations per frame in the region
where the number of computations is large. As noted be-
fore, the computations on any block in this region are
dominated by single large computations that result from
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the decoder extending its penetration from depth M — 1 to
depth M, for some M and some ! much less than the
frame length. If the phase error ¢ is essentially constant
for these I or more bits, then the distribution of computa-
tions can be considered as being conditioned on ¢ for
large numbers of computations per frame.

If the total number of computations in a frame is small,
then that computation must almost certainly have resulted
as the sum of a (possibly large) number of independent
searches, each with its own value of ¢. The degradation
in the computation distribution which results from phase
jitter in this case is less than the degradation which would
result if the phase error were constant over the entire
frame. A lower bound on the degradation can be deter-
mined by assuming that the phase error is independent
from bit to bit and computing the expected loss in signal
amplitude into the decoder by averaging over the dis-
tribution of ¢.

The pseudo-theoretical distribution of decoding com-
putations which results from treating phase error as
constant over an entire frame and averaging the perfect-
reference computation distribution over the phase error
distribution has thus two levels of validity: It is an ac-
curate estimate of the low-probability, long computation
events, which correspond to erasures in a typical system;
and it represents an upper bound to the degradation due
to phase error for the sums of several short searches,
which occur with higher probability and which seldom
represent erasures.

To obtain numerical results, the probability distribu-
tion family shown in Fig. 1 was approximated by func-
tions of bit SNR (R), and average number of computa-
tions per bit (N). The chosen approximating functions are
of the form

Pr{c., > N*L} = exp{ >
n=-1,1
r=0,2

A,,R’(In N)"} (3)

The coeflicients {A,,,} were determined by a two-dimen-
sional, least-squares polynomial fit, and appear in Table 1.
The frame length is L.

The solid lines of Fig. 1 show this approximation.
Having thus been defined as functions of bit SNR, it is
a trivial task to express these distributions as functions
of total bit SNR and carrier phase error ¢, and to nu-
merically integrate them over the distribution of ¢
(Eq. 2) for various values of the carrier tracking loop
SNR. Figure 2 shows the computed distribution of the
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computation for a fixed input symbol-error probability
of 6%. The loop SNRs and bit SNRs correspond to the
Pioneer 10 modulation index and its range of data rates.
This same family of curves has been generated experi-
mentally by C. Grauling and J. Wilcher (Ref. 8), and is
reproduced here as Fig. 3. Notice that, in general, the
computed distributions predict a considerably poorer
performance than observed experimentally.

To understand why the experimental and computed
results disagree, we need observe that decoding per-
formance with noisy reference depends to some signifi-
cant extent upon the decoding performance at very low
SNR. For large values of ¢, the effective SNR at decoder
input is very low, and is outside of the region enclosed
by the data of Fig. 1. We are thus depending upon the
valid extrapolation of Eq. (3) of Table 1. This extrapola-
tion does not follow the trends observed in some recently
developed experimental distributions (Ref. 9, Fig. 2):
both the exponent o and the probability-axis intercept
remain too high at extremely low SNR.

We can induce a better fit at low SNR by including
low-SNR hypothetical data in the data set, as shown in
Fig. 4. The exponent of this curve corresponds theoreti-
cally to E,/N, = —2.0 dB (Ref. 10). At extremely low
SNR and short block lengths, it has been observed
(Ref. 9) that the computation distribution appears as if
the code tail added to the effective signal but not so
much to the noise. This would occur if the effective
length of the decoding searches approached the block
length. If we assume that the entire tail contributes to
this effect, then there is an effective increase of over
0.5 dB for the 192-bit Pioneer 10 frame with a 24-bit
tail, and about 0.1 dB for the 1152-bit Helios frame with
a 32-bit tail.

The solid lines of Fig. 4 result from assuming E;/N, =
—2.5 dB for the hypothetical data, equivalent to assum-
ing a Pioneer block with the tail fully contributing to
the effective SNR. The approximation parameters appear
in Table 2. Figure 5 shows the computed distribution
of the computation for a fixed symbol-error probability
of 6% using the approximation of Eq. (3) (Table 2). The
curves of Fig. 5 are now encouragingly close to the ex-
perimental curves of Fig. 3. To improve our confidence
in performance curves computed in this fashion, we must
determine experimentally the computation distribution
at very low SNR. This is not an easily accomplished task
because the number of decoder computations needed to
acquire any fixed amount of computation distribution
data is large for very low SNR,
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At the moment, the best estimate of sequential decod-
ing with noisy reference performance is obtained by
computing from the approximation of Eq. (3) (Table 2).
The distribution of computations for fixed bit SNR using
this approximation is shown in Fig. 6a—c. The hypothetical
augmented data set of Fig. 4 has also been approximated
assuming E;/N, = —2.0 dB, for correspondence with
long blocks, and the resultant parameters appear in
Table 3. The computed distribution of the computation
for this approximation is shown in Fig. 7a—c.

IV. Summary and Extensions

This article has presented a technique for analyzing
the effect of a noisy carrier phase reference on sequential
decoding. The technique produces a good approximation
to frame erasure probability—when that probability is
low—and a bound to the degradation caused by the
noisy carrier reference for other regions of the distribu-
tion of computation curves. There is no previously pub-
lished theory detailing the behavior of the distribution
of computation in a noisy reference environment. How-
ever, the increase in SNR needed to counteract noisy
reference losses and achieve a Pareto exponent a =1
was bounded by Heller (Ref. 11). This bound is some-
what more pessimistic than that of Fig. 2 for a ~ 1.

One of the inputs to this analysis is the experimental
distribution of decoder computations per frame, which
is necessarily a function of frame length. In order to
develop an analysis of the effect of phase jitter on se-
quential decoding which is accurate for all ranges of the
computation variable and which can be adapted to all

170

frame lengths, an accurate model of the sequential de-
coding process is needed. From observation of experi-
mental distributions of sequential decoding computation,
both on a per-bit and per-frame basis, I believe that the
computations needed to sequentially decode a frame of
data can be represented as the sum of a number of
independent searches of varying length. If within a par-
ticular frame, a search of length I ends at depth M, then
the number of computations needed to penetrate from
depth M —j to M —j+ 1 is strongly dependent upon
the numbers of computations needed to penetrate from
depth M — 1 to M whenever 1 <j < l. Searches are char-
acterized by two numbers, their length I, and the num-
bers of computations required to complete the search,
Except for boundary effects, a frame contains some
number of searches whose lengths total to the frame
length. This hypothetical model can, and should, be
tested by properly instrumenting a sequential decoder
to determine the joint distribution of search length and
number of computations. Assuming that this model is
valid, the noisy reference problem could be easily at-
tacked, since the search length [ is almost certain to be
short enough for the phase error ¢ to be constant through-
out each search. Alternatively, the search length I is the
“integration time” parameter needed to apply interpola-
tion techniques to decoding behavior when the phase
error ¢ varies during searches.

The joint distribution of search length and computa-
tions would be modified to include the effects of carrier
phase jitter, employing the same numerical techniques
just used, to produce a distribution family—in terms of
bit SNR and carrier loop SNR-—which can subsequently
be used to derive all parameters of interest.
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Table 1. A, , for Pioneer data

-1 0 1
r
0 —4.48 5.81 —0.329
1 491 —5.01 0.806
2 —1.25 0.995 —0.685

Table 2. A, , for short-frame, low-SNR extrapolation

-1 0 1
r
0 0.44 0.179 —0.773
1 —0.127 0.603 1.44
2 0.016 —0.401 —0.903

Table 3. A, , for long-frame, low-SNR extrapolation

-1 0 1
T
0 —0.88 0.374 0.617
1.20 0.673 —0.181
2 —0.302 —0.512 —0.431
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