The X930 Program Set for Sigma 5 Assembly

C. C. Klimasauskas

Communications Systems Research Section

This article describes a set of programs that have been written to enable the
Sigma 5 computer to assemble programs for the XDS 920/930 computers. It con-
sists of two parts: a system procedure deck which allows SIGMA METASYMBOL
to assemble a source language similar to the XDS 900-series METASYMBOL, and
a secondary loader which reformats the Sigma 5 load module into the Universal
Binary Language of the 900-series machines and writes it to cards or magnetic tape.
The syntactic differences between this assembler and 900-series METASYMBOL
are described, as well as the process of generating a 920 program using this pro-

gram set and the Sigma 5.

l. Introduction

X930 is a program set consisting of a system procedure
deck and a secondary loader. The procedure deck defines
the algorithms required to convert an assembly deck simi-
lar in format to an XDS 920,930 METASYMBOL. assem-
bly deck to an intermediary format. This format, called
ROM language (Relocatable Object Module), is converted
by the Sigma 5 loader to a format (LMN—Load Module)
which is an appropriate input form for the secondary
loader. During this load operation, all references to exter-
nal routines are satisfied from the Program Library. Then
the secondary loader processes the load module, produc-
ing a binary format which can be loaded by the XIDS 930
Monarch Loader, or by an XDS 930 Bootstrap Loader.

86

This binary output can be to punch cards or magnetic
tape. A flow chart of this is shown in Fig. 1.

Il. The System Procedure Deck

The system procedure deck accepts a source deck which
is similar in format to an XDS 930 METASYMBOL deck.
The major differences between X930 source language and
XDS 930 METASYMBOL source language lie in the for-
mat of literals (Holerith, Octal, and Decimal), the method
for making external references and definitions and the use
of the DO, PROC, and END directives. Three special
directives in X930, described later, aid in alleviating the
problem of generating literals for the XDS 930 computer.

JPL TECHNICAL REPORT 32-1526, VOL. VIl

The user gains the advantage of being able to employ the
Sigma 5 METASYMBOL directives in his program.

lll. The Secondary Loader

The secondary loader takes the core image code pro-
duced by the Sigma 5 loader and translates it to XDS 930
standard binary language. The secondary loader aborts
whenever an input/output (I/0) error occurs, or the pro-
gram detects an illegal input format, or an error has
occurred during the load operation which generated the
load module. An appropriate message is printed at the
time of the abort. -

The loader is not capable of detecting the absence of
an end transfer record for a program, and will assume an
end transfer address of zero. Great care must be exercised
to always include an end transfer address on the program
END card. The secondary loader is not capable of loading
a load module longer than 2000,, words. Load modules
with more than 2000,; words are rejected. All external
references must be satisfied and no overlay structure is
allowed. The binary output from the secondary loader
will be absolute or relocatable contingent on the mode
in which the load module was generated by the Sigma 5
loader.

IV. User Description

This is a user-oriented description of the X930 program
set. It is assumed that the user is familiar with the XDS 930
computer and the Sigma 5 BPM operating system. Exam-
ples are given where it was felt greater clarity might be
achieved and no attempt was made to be exhaustive. The
description consists of two parts: (1) the PROC deck, and
(2) the secondary loader.

A very important part of the X930 program set is the
PROC deck. The PROC deck describes the 930 instruc-
tions, and specifies exactly what binary data are generated
for each. The following sections describe the instruction
format, available directives, and a comparison of the X930
(Sigma 5) assembler directives and 930 METASYMBOL
directives.

A. X930 Directives

1. BCD directive. Sigma 5 BCD to 930 BCD conversion
PROC. Similar to the BCD directive in 930 META-
SYMBOL.:

BCD,C ’xxxx’, 'xyyy’, 'zzzz'

JPL TECHNICAL REPORT 32-1526, VOL. Vii

BCD Invokes the BCD PROC which converts text

strings in the address field to 930 BCD format.

C Number of characters in each string. C must
be between 1 and 4. If C is omitted, 4
characters/text string is assumed.

’xxxx” These are all Sigma 5 text strings (character
'yyyy’ literals). They may be at most 4 characters
‘zzzz' long. As many strings as desired may appear

in the address field of the BCD directive.

The BCD directive takes the Sigma 5 literal string and
converts it to 930 character code, packing it 4 characters/
word. If fewer than four characters exist in each string,
or C is less than 4, the characters will be left justified with
trailing blanks inserted. Hence, each string generates one
word of code.

2. FSC directive. Floating-point short to 930 decimal
conversion PROC:

FSC FS'347.2' FS’-964.3E 48’

FSC Invokes the floating-point short constant PROC,
which converts Sigma 5 floating-point short con-
stants to 930 floating-point constants:

FS'347.2
FS’—964.3E +4-8—Sigma 5 floating-point short

constants

This procedure does the same thing as the DED direc-
tive in 930 METASYMBOL. Any number of constants may
appear in the address field. Constants are generated in
the order they appear. Each constant occupies two words
of core, and is in the standard 930 normalized floating-
point format.

The 930 METASYMBOL. equivalent for the above ex-
ample is:

DED 3472, 964.3*+8

If other than a float-point short constant appears in the
address field, it will be treated as if it were a float-point
short constant, and an illegal instruction format error
given.

3. FLC directive. Floating-point long to 930 decimal
conversion PROC, This is identical to FSC except that the
constants must be long format (64-bit) floating-point num-
bers. If other than a floating point long constant appears in
the address field, it will be treated as if it were a floating-

87

point long constant, and an illegal instruction format error
given.

4. Data9 directive. Generate 930 compatible data:
Data9 ‘ABCD’,27,6’15,FL’368.2' FS"4E — 5" X'3F’

The Data9 PROC allows the generation of 930 com-
patible constants. All constants generated are truncated
to 24 bits, truncation occurring on the left. If truncation
of significant data occurs, a truncation error will be sig-
nalled. BCD and float-point (long and short forms) are
converted exactly as described in the BCD, FSC, FLC
directives. All other data are handled exactly as they are
written. For example, the above statement has the 930
METASYMBOL equivalent:

BCD 4,ABCD
DATA 27,015

DED 36824.%+(—5)
DATA 077

NOTE: BCD data are always converted as if they con-
tained 4 characters.

5. OPD directive. This directive is identical to the OPD
directive in 930 METASYMBOL; however, it must appear
before the operation to be defined as referenced.

6. RORG directive. This directive is similar to the 930
METASYMBOL RORG directive in that it allows the
programmer to set the location counter; however, the
code generated will be absolute or relative as determined
by the load card. No equivalent to the AORG directive
exists. All areas which are not used are filled with zeroes.
Hence, if a RORG 100 occurs followed by three words of
data, and then a RORG 203 followed by the remainder of
the program, zeroes will fill locations 103 to 202.

7. FORM directive. The FORM directive is identical to
the FORM directive in 930 METASYMBOL. The FORM
directive must precede any reference to the FORM which

is defined.

8. External references and definitions. In 930 META-
SYMBOL, all undefined symbols are considered external
references. In Sigma 5 METASYMBOL, external refer-
ences must be explicitly defined by having those symbols
appear in the address field of a REF directive. Externally
defined symbols are those which appear in the address
field of a DEF directive.

88

V. Using the Secondary Loader

After a load module has been generated by the Sigma 5
loader from the code generated under the X930 PROC
deck, the secondary loader produces standard XDS 930
binary records. The secondary loader will not load a pro-
gram in which any errors occurred during the generation
of the load module.

First, a look at the options on the Sigma 5 load card is
in order. The discussion applies particularly to BPM; how-
ever, the principles involved apply to other operating sys-
tems as well.

OPTION Effect on the secondary loader.

ABS Absolute binary records will be pro-
duced by the secondary loader. If ABS
is not specified, relocatable records
will be produced.

BIAS A bias of zero allows the user to deter-
mine the origin of this program abso-
lutely using the RORG directive if
ABS is specified, or relatively using the

RORG directive if ABS is not specified.

A bias other than zero relocates the
program to the nearest integer mul-
tiple of X’200’. This happens regard-
less of the ABS option.

NOTCB Since the program is meant for the
930, no TCB (Task Control Block) is
allowed. The secondary loader cannot

load a program with a TCB.

NOSYSLIB Since the program is meant for the 930,
it is impossible for any of the routines
for the Sigma 5 to work in the 930.
Hence, external references should not
be satisfied from the system library
(absence of the NOSYSLIB option),
but from the appropriate user element

file.

This option must be specified. The
name of the LMN must be assigned to
M_:EI for use by the secondary loader.

LMN

Next, let us consider the input and output for the sec-
ondary loader. Input of the load module is through the
system M:EI DCB. This must be assigned before the sec-
ondary loader is executed. The standard XDS 930 binary,
which is produced by the secondary loader, can be output
to cards or magnetic tape through the M:EO system DCB.

JPL TECHNICAL REPORT 32-1526, VOL. VI

If output is to magnetic tape, the PACK option must be
specified. When the binary has been produced, two end-of-
file marks are written and control returned to the monitor.

The length of the 930 program must not exceed 8000
words. It must be remembered that the Sigma 5 loader
always starts a load module at the bias value (rounded to
the nearest page) and, therefore, a RORG directive causes
zeroes to be inserted. (RORG 100 would cause the pro-
gram to be preceded by 100 words of zeroes.) When pro-
ducing the XDS 930 binary, all leading zeroes are ignored.

Only protection type (00) code is output to the M:EO
file. All other protection types are ignored. The total pro-
gram length (including leading zeroes) will always be
even; hence, a final word of zero may occur at the end
of the program.

An end transfer record is always generated. If no end
transfer address was specified on the program, an end

JPL TECHNICAL REPORT 32-1526, VOL. Vii

transfer address of zero is assumed. A warning is printed
for absolute programs with a transfer address of zero.

VL. Progress

The X930 Program set has been successfully used to
assemble on the XDS Sigma 5 computer and execute on
the XDS 930 computer simple stand-alone test programs
which type pre-selected BCD strings and perform simple
arithmetic functions, typing the result. The programs have
been loaded by the XDS 930 computer equally well from
magnetic tape and cards. Programs with external ref-
erences which can be satisfied by the X930 program
library (making the resultant code stand alone) have also
been successfully executed on the XDS 930 computer. The
library routine in this case was a core-dump subroutine
used to display the contents of the 930’s memory on the
printer and thus help verify the performance of X930.

89

90

X930 PROC \ REFERENCE FILE

X930 SOURCE DECK

INPUT

DECK /

X930 PROGRAM \ REFERENCE FILE

ASSEMBLE USING
METASYMBOL

QUTPUT

SIGMA OBJECT
LE

MODU

INPUT

LIBRARY /

LOAD

USING

LOADER

OUTPUT

SIGMA CORE-IMAGE
LOAD MODULE

INPUT

OUTPUT USING

X930 SE

LOADER

CONDARY

OUTPUT

920/930 STANDARD
BINARY DECK

Fig. 1. Operational flow chart for the X930

program package

JPL TECHNICAL REPORT 32-1526, VOL. Vii

