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A quadratic-polynomial Fermat residue number system (QFNS) has been used to
compute complex integer multiplications, The advantage of such a QFNS is that a com-
plex integer multiplication requires only two integer multiplications. In this article, a new
type Fermat number multiplier is developed which eliminates the initialization condition
of the previous method. It is shown that the new complex multiplier can be implemented
on a single VLSI chip. Such a chip is designed and fabricated in CMOS-pw technology.

l. Introduction

The era of very large scale integrated (VLSI) circuits has
arrived. VLSI systems have the characteristic of being com-
pact, high speed and of low power consumption. Therefore, a
large system can be integrated into a VLSI chip. Many systems
which were realized in discrete components can be improved
dramatically by taking advantage of VLSI technology.

Since the available area on a chip is limited, a residue
number system can be introduced in order to reduce the
computing complexity. The ring of integers modulo the
Fermat number F, = 22" + 1 has some special simplifying
characteristics for residue number systems. Recently, Leibo-
witz (Ref. 2) developed a binary arithmetic for implementing
the Fermat number transform (FNT). In this development a
special representation of binary numbers, the diminished-1

representation, was introduced. Arithmetic operations using
this representation were developed also in Ref. 2. The FNT has
been widely discussed in many papers (Refs. 3-5). Recently,
the authors (Ref. 6) developed a VLSI architecture for a
modified Leibowitz multiplier of integers modulo a Fermat
number. This bit-modulo multiplier uses only addition and
cyclic shifts. With this architecture a single chip integer multi-
plier was designed, fabricated, and proved to work well.

Recently, the authors (Ref. 1) also developed an algorithm
to compute the DFT using the residue Fermat number systems.
In this algorithm, a complex multiplier was developed which
used the direct sum of two copies of the residue ring of inte-
gers modulo F,. The advantage of this approach is that the
operations for computing the complex multiplier need only
two integer multiplications in Z;. , the residue ring of integers
modulo £, . Hence the number of multiplications required for
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computing a systolic array of the DFT can be reduced sub-
stantially over previous approaches. The basic unit of such a
complex multiplier is the integer multiplier over ZFn' In this
article, the integer multiplier in Ref. 6 is modified. This new
multiplier uses the diminished-1 representation for both input
numbers. The second improvement is that the new design does
not require the computation of an initial value. Hence consid-
erable computation time and hardware can be saved. Thus, the
new integer multiplier is easier to connect to a quadratic-
polynomial residue Fermat number system for computing
complex multiplications. As a consequence the new complex
integer multiplier unit is readily implemented on a single
VLSI chip.

Il. The Integer Modulo F,, Multiplier

Integer multiplication with small dynamic range is often
implemented by look-up tables. When the dynamic range is
large, however, this method is undesirable (Ref. 13). Hence an
arithmetic algorithmic solution for implementing the multi-
plier is needed. In Leibowitz’s paper (Refs. 1 and 2), general
multiplication has the form

MAdB-H)=A-DB-1D+4+B-1)-1 (1)
in the diminished-1 representation.

In the algorithm developed in Ref. 2 the binary multiplica-
tion of (4 - 1) * (B - 1) was computed first. Then the term
(4 + B - 1) was added to the result in the diminished-1 repre-
sentation. In Ref. 6, a new multiplier was designed which uses
the diminished-1 representation of numbers. The product of
two integers, 4 and B, was obtained as

A*B-1)=(@A-1)+B+D+1 2)

where D is an initial value calculated from the number of ones
in B, and where (x - 1) denotes the diminished-1 representa-
tion of the number x. The main disadvantage of the multi-
plier in Ref. 6 is that the initial value D must be calculated
before the process starts. The use of different representation
of numbers, ie., the diminished-1 representation of A along
with the ordinary binary representation of B, leads to some
confusion. '

A new modulo £, multiplier is now derived. Let F, = 2P+
be a Fermat number where n is a positive integer. Also let +
and + be the symbols for addition and multiplication and(*)
and * be the symbols for the diminished-1 addition and multi-
plication. Also let B denote the diminished-l1 summation
(i.e., consecutive diminished-1 additions). Then the following
theorem holds.
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Theorem 1: Let 4 and B be two elements of the finite
residue ring of integers modulo F, ie., ZFn' Then the
diminished-1 multiplication can be calculated within ZFn as
follows:

2n
@-D@B-D=@-"B-1)=D, 424-1)+A-1)
=0
(3)
where
2"
B-1) =P, b2, b=00r1
i=0

is the binary representation of B ~ 1.

Proof: From Ref. 2, it is known that

A*B-1)=@-1)B-D+B-1)+A-1)

But
2"
= i
B-1=3.5,2
i=0
Thus,
2" 2" 2"
A:B-1)= ), (3,2 A-1) - D b2'+ 31
=0 i=0 i=0
2”
+d-1D+ Z b, 2’
=0
2”
=3 @2 A-D+2"+1+(A-1)
=0
Hence,

2”
M-B-1)=) 52'U-1)+(A-1) 6]
=0

Note that the diminished-1 addition can be performed by an
adder of the type used in Ref. 6.

The recursive architecture for computing developed in
Ref. 6 can be modified to compute Eq. (4). To see this, let the
initial value be G = A4 - 1. Then the multiplication algorithm
in Eq. (4) can be put into the following recursive form:



-1) (53

if one successively computes C,,, in Eq. (5a) for 0 <i< 2",
the required result is obtained as follows:

= i = {
Cpy =Ct (3,22 4-1D+1=C ® 24

- . - = - 2n0 —
C=A4:B-1=C, Czn@(b2n2 A -1) (5b)

In Eq. (5a), one observes that if b 1, then C,,, = C@®
(2’4 -1)andif b, =0, then C,,; = C - 1+1=C. Inother
words, (2! * 4 ~ 1) is added into C, for b, = 1 and no opera-
tion is needed for b, = 0.

This new algorithm does not need a calculation of the
initial value and to transform B - 1 to B. Now let the new
algorithm be illustrated by an example for F, = 2% + 1. The
same structure clearly extends to more general multiply
algorithms over ZFn'

Consider an example in F,. The elements in GF(2* + 1)
with their decimal equivalents in a normal binary representa-
tion along with their values in the diminished-1 representation
are shown in Table 1.

Example 1: Let 4-1=01010andB-1=00101.
Compute C=(4B-1)=01010X 00101 modulo2* +1.

To compute C, let G, =4 -1=01010andB-1=
00101 =b5bb,b b, The sequence of computation for
01010X 00101 is then as follows:

01010 C=4-1=01010
+01010 52°4-1=01010, 24-1=00100
10100

+ 0

100100 =C, ® (4,2°4-1)

+10000  b24-1= -1, 224-1=01001
10100

+ 0

00100 C, =C -1+1=C,

+01001  ,2%+4-1=01001, 2°4-1=00010
01101

+ 1

01110 €, =C ® (b,2°4-1)

+10000 5,2°4-1 = I, 2%4-1=00101
11110

N0

01110 C, =G -~1+1=C,

+10000 p2*-A-1=-1, 2°4-1=01011
11110

+ 0

01110 (,=C,-1+1=C,

Thus, C'= C =01110isthe desired result of 0 1 0 1 O times
00101, module 2% + 1 in diminished-1 notation.

In Example 1, one observes that no operation is needed for
b, = 0, that is, G, | =C, for b, = 0. This example can be simpli-
f1ed as follows:

01010 C,=A-1=01010
+01010 5,2°4-1=01010

10100

+\0

00100 =C, ® (5,2°4-1)=¢,
+01001 5,224 -1

01101

+ 1

01110 =C, @ (,2°4-1)=C,=C=C

Example 1 shows that diminished additions require the
addition of the complement of an end-around carry to its sum.
It was shown (Ref. 6) that a considerable speed improvement
can be obtained by performing this operation simultaneously
with the summation. A modified algorithm with this simul-
taneous addition is given for the previous example as follows:

Example 2:

11010 C,=10000+A4-1)
01010 5,2°A-1

+ 0

10100 F = 0
10100 C, =C ® (52°4-1)

01001 5,224-1=01001
0

&

st ~ ) s
01101 Ca—C2+(b22 A—l),Cz—Cl—C1+1
00000

+ 1
01110 C3=Cs+1=C4=C5=C

lll. A VLSI Structure for Implementing
an Integer Multiplication Modulo F,

In Fig. 1, A, B, C, and D are 5-bit, 6-bit, 5-bit, and 6-bit
registers, respectively. Initially registers A, B, C, and D contain
the multiplicand 4 - 1, the multiplier B - 1, 2* + (B - 1),
and 25 - 1, respectively. The content in register D is used to
add 00000 into G, =C, + (b, * 2* + A4 - 1). That s, C, =
Cs + 1. The content in reg1ster B is used to control whether

G4y = C for b;= 0 or 52" + 1 is added into register C for b; =
1. At the very same moment C;,, = (G, + 1) + (2' 4 - 1) =
+ (2" 4 - 1) is computed and loaded into the register C for
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0 <7 < 4. The diminished-1 multiplication of (4 -~ 1) by 2 is
performed by a left cyclic shift of the four least significant bits
of register A with the 4, bit circulateq into the first significant
bit and complemented. Also at the same time registers B and D
are shifted right by one bit. These operations are continued
repetitively until the MSB of registers B and D are shifted out.
The desired final result 0 1 1 1 0 is obtained in register C after
six iterations.

The layout of the structure in Fig. 2 has been completed
by the use of the CAESER design tool (Ref. 7). The final
layout of the multiplication chip is shown in Fig. 2. Both logic
and circuit level simulations were performed using the logic
simulator “Esim” (Ref. 8) and circuit simulator *“Spice”
(Ref. 9). A timing analysis was done using the timing simulator
“Crystal” (Ref. 10). The VLSI chip is being fabricated. The
operating frequency is estimated at around 5 MHz with 3 um
CMOS technology. The total number of transistors in this chip
is about 480. The chip for multiplication modulo F, in Ref. 6
requires 1000 transistors. Thus, this new multiplication
algorithm requires only 50% of the transistors than the one in
Ref. 6. The area of this chip with pads is estimated to be about
0.28 cm X 0.28 cm (110 mil X 110 mil).

IV. The Complex Modulo F,, Multiplier

Let @ + ib and ¢ + id be two complex numbers where g, b,
¢, and d are integers and i> = ~1. The general complex multi-
plication of (z + ib) and (¢ + id) is (a + ib) * (c + id) = (ac - bd)
+ i (bc + ad) which needs four integer multiplications and two
integer additions. An algorithm which can perform a complex
multiplication by only two integer multiplications is intro-
duced in Refs. 11 and 12. A special case of this algorithm for
Fermat number F, is introduced in Ref. 1. It is shown in
Ref. 1 that an (@) is isomorphic to the direct sum of two
‘copies of an, ie., SFn = Z_pn + ZFn’ integers modulo F,.
In Ref. 1, let s be the solution of x2 =~1 mod F,,. Fora +ib
an (), the following mapping,

I a+z‘b-+((a+sb)Fn,(a—sb)Fn)=(oz,&') 6)

is an isomorphism of ZFn (?) onto S, where addition and
multiplication in Spn are defined by

(0, @)+ (8,B) = (a+B,a+h) (72)
and
(0,@* (B,B) = (@+8,a*P) (7b)

In the set of Fn, s can be found as s = +22" Thus the
forward mapping from @ + ib to (@, @) requires cyclic shifts
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and additions only. The inverse mapping of f, f1, is also
simple. From Ref. 1,

a= —2""n~1 (o + @) mod F (8a)
n

and

b=-22"""1 (a+@) mod F (8b)
n .

Note that in Ref. 2 the negative number is the complement of
the 2" least significant bits of its positive counterpart. Hence
the inverse mapping requires cyclic shifts, complements, and
additions only. This complex integer multiplier algorithm is
illustrated in the following example.

Example 3: Compute (001 10+/00010)-(00100
+1000 1 1) module F, = 2% + 1.

In residue rings of £, = 17, one obtains s = +22. By Eq. (6),
the forward mappingof (00110+i00010)is

(00110+i00010)>((00110+22(00010)),

(00110-22(00010)

Il

((00110+01011),(00110-01011)

(00001,(00110+00100))

(00001,01011)
Similarly

(00100+i00011)~>(00011,00101)

Thus, the multplication over £ is
2

(00110+i00010)*(00100+i00011)

(00001,01011)+(00011,00101)

(00001+-00011,01011-00101)

Using the integer multiplier modulo F, developed in the pre-
vious section, one obtains(00110+/00010)+(00100+
i00011)=(00111,0001 1). By Egs. (8a) and (8b), the
inverse mappingof (00111,0001 1) are

e =-22(00111+00011)=-22(01011)

= -01010=00101




and

~
i

=-2(00111-00011)=-2(00111+01100)

-2(00011)=-00111=01000

Thus, 00101 +701000 is the desired result of (00110
+i00010)*(00100+70001 1) modulo 2% + 1 in
diminished-1 notation.

V. A VLSI Structure for Implementing a
Compiex Integer Multiplication
Modulo F),

In most digital signal processing applications, the multi-
pliers are usually known. Thus, this multiplier can be precom-
puted to be (8, B). Figure 3 shows the architecture for imple-
menting Example 3. The same structure clearly extends to
more general multiply algorithms over ZFn‘

The layout of this multiplication chip is shown in Fig. 4.
The logic, circuit, and timing simulations are performed. The
chip of a complex integer multiplication circuit for F,=17is
being fabricated. The operating frequency is around 5 MHz

with 3 um CMOS technology. The total number of transistors

in this chip is about 2300. The area of the chip with pads is
estimated to be about 0.41 ¢cm X 0.41 cm (162 mil X 162 mil).

VI. Conclusion

A new Fermat number integer multiplier is described in
this article. This new Fermat integer multiplier does not need
the initialization procedure as the one developed previously.
Both the area and operating speed of the chip are greatly
enhanced with this modification. In Ref. 1, a quadratic-
polynomijal Fermat number system was used to compute
complex integer multiplications. The advantage of such a
system is that a complex integer multiplication requires only
two integer multiplications while the conventional complex
integer multiplier needs four integer multipliers.

In this article, the new Fermat number integer multiplier
is used as an integer multiplier in the quadratic-polynomial
Fermat number system to compute complex number multipli-
cations. A VLSI architecture for this new complex integer
multiplier is developed and it is demonstrated in this article
that this new complex integer multiplier, which uses the
Fermat number F2, can be implemented on a single VLSI
chip. Such a chip would be designed and fabricated in CMOS-
pw technology.
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Table 1. The correspondence among decimal numbers, their
values in the normal binary representation, and in the diminished-1

representation
Decimal number Normal binfzry Diminished'-l
representatlon xepresentatlon

0 00000 1

1 00001 2

2 00010 3

3 00011 4

4 00100 5

5 00101 6

6 00110 7

7 oo111 8

8 01000 9(-8)

9 (-8) 01001 107
10 -7 01010 11 (~-6)
11 (-6) 01011 12 (-5)
12 (-5) 01100 13 (-4)
13 (-4) 01101 14 (-3)
14 (-3) 01110 15 (-2)
15 (-2) 01111 16 (-1)
16 (-1) 10000 0
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Fig. 1. The pipeline architecturs for the implementation of multipiication modulo the Fermat
number 2' + 1 using diminished-1 number presentation

Fig. 2. VLSI layout of an integer multiplication circult for Fy = 2% + 1
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