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New short constraint length, high-rate convolutional codes which minimize the
required SNR are found and tabulated for rates 2/3, 3/4, and 4/5, and for constraint
length K up to 10. When compared with previously reported codes, most of the new
codes reduce the required SNR only slightly. However, there are some pairs of K and
code rate for which the new codes require considerably less SNR. The most significant
one is the new K = 8, rate 4/5 code which requires 1.25 dB less SNR than the known
code with the same parameters, for a desired bit error rate of 1076,

l. Introduction

For a convolutional coding system employing a Viterbi
decoder, the decoded bit error rate (BER) is well upper-
bounded by the transfer function bound (Refs. 1; and 2,
Chap. 4) :
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where the coefficient ¢, and transfer function T(D, Z') depend
on the code and type of channel used. The quantity D is the
Bhattacharyya bound (Ref. 2, p. 63) which depends on the
channel only, df is the free distance of the code, and g, is the
number of bit errors in all incorrect coded symbol sequences
with Hamming distance i. For an additive white Gaussian noise
channel with binary PSK signaling (BPSK/AWGN channel)
without quantization, we have (Refs. 1;and 2, p. 248)
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where N, is the one-sided noise power spectral density, £
is the received signal energy per channel symbol, and
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Many researchers have used the maximum d; criterion, or
the criterion of maximum ds together with minimizing the
first few ¢js in Eq. (1) for determining the goodness of a code
in their code search procedures. However, we have shown in
Refs. 3 and 4 that, for low rate codes, these criteria do not
necessarily lead to codes which minimize required signal-to-
noise ratio (SNR) for a certain desired BER. Direct use of
Eq. (1) for BER evaluation in the search procedure provides
much better results.



This new minimum required SNR criterion is applied here
to the searches for good high-rate codes, which are useful for
systems with limited bandwidth. In the next sections, our
notation is introduced and the code search procedure is
briefly explained. Search results are then listed and discussed.

Il. Preliminaries

Letmy, k,, and n, be the number of binary memory cells,
inputs, and outputs of an (mg, ko/n,) convolutional encoder,
where k,/n, is the code rate r. A typical nonsystematic, time
invariant encoder structure is shown in Fig. 1. A group of
ko information bits is shifted into a shift register of length
K (= mg +kg), and outputs of n, modulo-2 adders are sampled
and sequentially transmitted. The parameter K is called the
constraint length of the code, while m, is called its memory
length. Notice that the number of states in the Viterbi decoder
trellis is 2°. The low-rate codes considered in Refs. 3 and 4
are special cases with k, = 1.

Besides these key parameters, the code performance is
determined by the connections from K shift registers to n,
modulo-2 adders. These connections are often represented
by an n, X K binary matrix G, called the code generator
matrix, where “1” stands for connection and “0” for non-
connection. As an illustration, a (2, 3/4) encoder and a
(3, 2/3) encoder are shown in Fig. 2, whose code generator
matrices are given, respectively, by

1 1 1 1 1
|1 0o 0 o0 1
G=10 0 1 0 1
0 0 1 0 0

and
1 1 0 0 1
G= |1 0 1 1

o
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For short hand notation, G is often represented by

(g(D), ..., 80, . ..&8(ny)

where g(7) is the jth row of G, in octal. For the codes in
Fig. 2, G= (37,21,5,4) and G = (31,23,16), respectively. By
“code search” we imply the search for a code generator G
which provides good performance among the codes with
same key parameters.

The transfer function bounding technique on the BER at
the Viterbi decoder output will not be discussed here; it can
be found in many references, including Refs. 5, 6, and 7.

lll. Code Searching Procedure

In this study, we restricted our searches to high-rate
codes with ny = k + 1. Notice that the number of (m(}c, ky/
(ko + 1)) codes in the whole code space is 5 (mo+ko)X ( 0+8.
For example, there are over 4 billion (5, 3/4) codes. Further-
more, according to our criterion, to test a code we have to
evaluate the transfer function bound, which requires a matrix
inversion. Therefore an exhaustive search is prohibitively
difficult except for very small m, and ky. Only partial
searches are possible to obtain results in a reasonable length
of time.

In the previous searches for low-rate codes, we developed
several effective techniques for reducing the code search space.
Many of these techniques are applied to the high-rate code
searches with appropriate modifications.

First, for a given pair of m and k,,, we made a list of some
r = 1 codes (actually these are not codes since there is no
redundancy) which are to be used for the generation of
r = ko/(ky + 1) codes. In this list, by using the simple fact that
exchanges of g(j)’s do not affect the performance of the code,
identical codes are discarded. Also, codes with too small free
distance (less than d, - 2, where d, is the maximum known
free distance of (my, ko/(k + 1)) codes, or its bound if not
known) are deleted. This procedure is based on the observa-
tion (Ref. 3) that the Hamming distance (from the all-zero
output) on each branch (in the state diagram) of a lower rate
code is always larger than or equal to that of the higher rate
code, used as a seed for its generation. Catastrophic codes are
not discarded at this time, as good r = k/(k, + 1) codes are
often found from catastrophic r = k/k, codes.

Each code in the list is used for generation of lower rate
codes. Among the generated codes, identical codes and cata-
strophic codes are deleted. Codes with free distance smaller
than d, - 1 are also discarded. For each remaining code, the
BER performance is found by the transfer function bound
with a SNR at which the best code is expected to achieve BER
of 1076,

IV. Search Results

The code search results are summarized in Table 1, where
the code generators of best codes are shown with their free
distance and the upper bound on the required bit SNR
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(Ey/Ng, E, =EJr=E; » (kg + 1)/ky) value for desired BER
of 10-%. These new codes are compared with the codes
reported in Refs. 8 and 9. If the best code in the sense of
minimum required SNR does not have maximum free dis-
tance, then the best code among maximum free distance
codes is also listed.

Notice that some of new codes have parameters never
considered before. For all codes, we were able to find better

codes than the previously reported codes. But the amount of
SNR saving is usually very small except for a few cases. For
the case of (4, 4/5) code (or equivalently K =8, r=4/5
code), we found a code which not only requires 1.25 dB less
SNR but also has larger free distance than the previously
reported code. Since we could not exhaust the code search
space for most cases, there might be some better codes.
However, we expect that better codes, if they exist, would
improve the performance very slightly.
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Table 1. Best (m,, k,/n,) binary convolutional codes with n, = k; + 1 which minimize the
required SNR for BER =< 107 and performance comparison to previously reported codes

(mgy, kolng) a’f E[Ny, dB Note Code generator G, in octal
(1, 2/3) 2 9.023 A 5 3 2
2 9.032 D 6 3 2
(2,2/3) 3 7.360 A 15 13 12
3 7.570 D 17 15 6
3 7.798 P 16 13 11
(3, 2/3) 4 6.292 A 31 23 16
4 6.320 D 33 22 15
4 6.341 P 37 22 11
4,2/3) 5 5.870 A 61 46 37
5 5.888 P 61 56 27
5 6.169 D 75 72 27
(5 2/3) 6 5.531 A 171 112 73
6 5.580 P 177 112 5§
6, 2/3) 6 5.171 A 366 241 163
7 5.211 P 337 236 155
(7, 2/3) 7 4.846 A 751 522 343
8 4.853 A 673 465 262
8 4.883 P 751 532 367
(8, 2/3) 8 4.632 A 1671 - 1322 423
(1, 3/4) 2 8.633 A 15 12 4 2
2 8.639 D 15 14 13 2
(2,3/4) 3 7.527 A 37 21 5 4
3 7.634 D 36 32 14 7
(3,3/4) 4 6.629 A 67 51 43 25
4 6.652 D 61 47 25 13
4,3/4) 4 6.042 A 157 122 4] 24
4 6.336 D 172 127 106 45
(5, 3/4) 5 5.735 A 255 236 164 127
5 5.776 D 357 216 124 45
S 5.797 P 367 244 141 72
6, 3/4) 6 5.449 A 723 657 345 261
6 5452 P 512 467 311 274
(7,3/4) 6 5.185 A 1752 1233 756 377
(1, 4/5) 2 8.578 A 34 23 10 4 2
2 8.820 D 36 26 13 11 4
(2,4/5) 2 8.003 A 71 53 34 10 4
2 8.507 D 67 57 52 26 15
(3,4/5 3 6.760 A 153 137 51 25 15
3 6.838 D 174 132 56 23 13
(4, 4/5) 4 6.316 A 373 254 225 215 112
3 7.561 D 337 274 255 237 156
(5,4/5) 4 5.993 A 765 613 571 537 110
(6,4/5) S 5.710 A 1537 1351 1145 1053 730

NOTES: A Found by the author
P Found by Paaske (Ref. 8)
D Found by Daut, et al. (Ref. 9)
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Fig. 1. Atypical (m,, k,/n ) encoder structure
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Fig. 2. Examples: (a) A (2, 3/4) code and (b) a (3, 2/3) code




