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A set of subroutines has been developed to simulate the performance of a sequential
decoder based on the Fano algorithm. This simulation can be used to verify the coding
performance of the ICE communication link. The probability of frame deletion can be
measured as a function of the number of computations allowed per frame and of E, [N,
Both hard and soft quantized inputs are considered.

l. Introduction

While many deep space missions use short constraint
length convolutional codes, which can be decoded by the
Viterbi algorithm, some missions use long constraint length
codes. These codes are efficiently decoded by sequential
methods.

ICE (International Cometary Explorer) is an example of a
mission using a long constraint length (K = 24) code. The
work described in this article was motivated by the need to
verify the coding performance of the ICE communication
link. The specific convolutional encoder (K = 24, rate = 1/2)
used in this mission is shown in Fig. 1. The frame length can
be varied, but is typically set at 1,024 bits, including a fixed
tail pattern of 24 bits. The sequential decoder is based on the
Fano Algorithm (Ref. 1), which is reviewed in Appendix A.
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Il. The Simulation

In order to carry out this simulation, a set of C-language
subroutines was written, representing the operation of a
coded communication link as shown in the block diagram of
Fig. 2, where each block corresponds to a subroutine. A
program called “universe” controls the execution of each
subroutine and defines the topology of their interconnec-
tions. The subroutine “generator” produces sequences of
binary random data in blocks of 1,000 bits, plus a fixed tail
sequence of 24 bits, which is appended at the end of each
block. The subroutine “‘coder” implements a convolutional
encoder as shown in Fig. 1. Then Gaussian noise generated
by “gauss” is added to the link by the subroutine “add” in
order to simulate a given £,/VN,. The sequential decoding
takes place in the subroutine “seq,” which also provides
quick-look decoded data; this data is useful in replacing



frames that would otherwise be deleted. The heart of the
decoder is a shift register which also contains a replica of
the encoder. High speed is achieved by using a pointer to
the contents of this register to avoid time consuming read/
write operations. Finally, the error statistics are displayed
by the subroutine “error.”

lll. Performance Results and Discussion

Two versions of the sequential decoder subroutine “seq”
have been developed, for hard and soft quantized (3-bit)
inputs. Each performance measure depends on the following
parameters: E,/N,, frame and tail length, the increment A
used to update the running threshold in the Fano algorithm,
the maximum number of computations C allowed for each
frame, and, for soft decoding, the particular metric used.
The number of computations is defined as the total number of
forward moves per frame. A frame is deleted when it cannot
be decoded in C or fewer computations.

Figure 3 shows the performance of the hard-quantized
decoder in terms of probability of frame deletion Py, versus
E,[/N,, for some values of C and metric ratio MR, which is
the ratio of metric increments assigned to symbol agreements
and disagreements (Ref. 2). Figure 4 shows the performance
for the soft-quantized decoder.

The performance results obtained by this software simula-
tion can be compared to those of a hardware decoder only
if the speed advantage is the same in both cases. Specifically,
the number of forward moves is not equivalent to the number
of computations per second in the hardware decoder, Fur-
thermore, the presence of a buffer for frames in the hardware
version tends to improve the performance at higher E,/N,, as
shown in Fig, 4, where C is the maximum number of computa-
tions allowed to decode the 3 frames in the buffer.

Figure 5 shows Py, vs the maximum number of computa-
tions per frame C, for hard and soft-quantized inputs,
respectively.
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Fig. 2. Sequential decoder simulation block diagram
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Appendix A

A brief summary of the Fano algorithm in the form used in
this simulation is given for completeness.

Consider the decoding of a frame consisting of FRAME
information bits plus TAIL bits in the tail. The task of the
decoder is to find the path on a binary tree of length
FRAME+TAIL which is the closest approximation to the
transtitted frame, according to a given measure criterion
(metric). At each node on the tree, the decoder looks for-
ward and attempts a move along the branch corresponding to a
“0” information bit. If a “1”* was transmitted at that level, the
decoder will realize that it is on a wrong path and make a
lateral move, which is equivalent to changing the previous
attempt into a forward move along the “1” branch. This is the
typical behavior of the decoder in the absence of noise.

If there are errors in the received sequence, the decoder will
perceive that it is following a wrong path, according to the
rules for search described below. Then it will back up a few
branches and explore alternative paths, until it finds a satisfac-
tory path of length FRAME+TAIL. At this point the first
FRAME bits in the path are taken as the decoded frame
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sequence. They may still contain errors, even though this kind
of error (decoded bit errors) is extremely rare.

If, for some frame, the decoder is forced to move erratically
back and forth on the tree up to a certain imposed limit on the
number of forward moves, that frame will not be decoded
(deleted).

Consider the flow diagram in Fig. 6. The “tilted distance”
TD[:] is a function of the distance between the received
symbol and the current path through the tree. At high £, /N,
TD[-] is an increasing function, and the decoder moves
forward (or laterally) on the tree. The decoder decides that
TD[-] is increasing or decreasing by comparing it with a
“running threshold” TR which is kept as large as possible, but
smaller than TD[:], and changes in steps of size A. If TD[*]
starts to decrease, the decoder will back up and then explore
other paths, or even come back to the same node, but with
more confidence to get past it (i.e., with a lower TR). There-
fore, the decoder will never reach the same node twice with
the same threshold, thus preventing infinite loops.




