TDA Progress Report 42-72

October—December 1982

A VLSI Implementation of a Multicode Convolutional Encoder

L. J. Deutsch
Communications Systems Research Section

This article describes a VLSI architecture and layout for a convolutional encoder. This
architecture allows a single chip implementation of an encoder that is capable of handling.
many different convolutional codes including all the convolutional codes that are pres-

ently used by NASA for deep space missions.

I. Introduction

Most present and all planned deep space missions make use
of convolutional coding. One reason for this is that the en-
coder for these codes is very simple and can be made relatively
small and light even with off-the-shelf components. A block
diagram of a convolutional encoder is shown in Fig. 1. The
convolutional code implemented in the figure is the NASA
standard (7, 1/2) code. The input information bits i,i,i5 - -~
are shifted into a register. This register is used to generate two
parity checks each time a new information bit is entered. A
commutator interleaves these parity checks to produce the
coded output stream @, b,a,b,a3b4 " - -

In a general convolutional decoder, the shift register is X
bits long. The number K is called the “constraint length” of
the code. In the most general situations, there can be more
than one K-bit shift register in the encoder. For the purposes
of this article, however, it will be assumed that there is only a
single register. If there are P parity checks that are generated
by the encoder, then the resulting code rate will be 1/P. The
code would then be referred to as a (X, 1/P) convolutional
code. This is not enough to define the code uniquely. The par-
ticular code is determined by the parity checks.

Consider a single parity check that is generated in the
encoder. Let the positions in the shift register be labeled
1,2, 3, - with the position 1 being the one that the data bits
enter first. It follows that this parity check can be described
by a K-bit binary number where a one in position 7 indicates
the presence of a parity check tap after state 7 of the shift
register. The parity checks themselves can be ordered so that
“parity check #1” is the first to be scanned by. the commuta-
tor and the “parity check #P” is the last. Using these conven-
tions, any (K, 1/P) convolutional code can be represented by
an ordered set of P K-bit binary numbers. For the (7, 1/2)
code described above, the numbers are:

1011011

1111001

If one reads the columns of this binary matrix as binary
numbers, this can be reduced to simply 3233013. This se-
quence of integers, together with the more common (7, 1/2)
notation, completely describes the convolutional code.

Sometimes one or more of the parity checks are inverted
before the multiplexing operation of the commutator. This

61




is done so that additional channel symbol transitions are
introduced in the case that the information bits consist of
long strings of either all zeroes or all ones. These transitions
are needed in order to synchronize the symbols in the receiver
before they can be sent to a decoder. These inversions have no
effect on the performance of the code itself but their presence
in any usable encoder is essential.

The performance of convolutional codes has been studied
in Refs. 1-3. The problem of node synchronization (determin-
ing what the order of the parity checks is in the decoder) was
treated in Refs. 3-5. :

II. A Functional Description of the Chip

The chip, as implemented, is capable of supporting three
codes. These are the standard NASA (7, 1/2) code 3233013,
the standard NASA (7, 1/3) code 7376147, and a longer con-
straint length (10, 1/3) code 7461776427. For each of these
codes, the capability of inverting any or all of the parity
checks has been included in the design.

There are 22 pins that will be connected to the chip. These
are:

INPUTS
Vdd The voltage connection to the chip — nomi-
nally -5 Vdec.
Gnd The ground connection to the chip.

Sub A connection to allow biassing of the éhip
substrate.

1/3 Selects the code rate. A “one” signifies that
a rate 1/3 code has been selected, while a
“zero’’ means the rate is 1/2.

SEVEN Selects the code constraint length. A “‘one”

indicates a constraint length seven code

while a “zero” indicates a constraint length

of ten.

NRMI1 This signal determines whether or not the

first parity check is inverted. A “one” indi-

cates the noninverted state.

NRM2 The same as NRM1 for the second parity

check.

NRM3 The same as NRM1 for the third parity

check. This signal has no effect if a rate 1/2

code has been selected.

62

BITIN This is the data input.

PHI1IN The input for the first phase of a two-phasé
clock.

PHI2IN The input for the second phase of a two-
phase clock.

CLOCKIN The input for a one-phase clock.

CLKSEL Selects between a one- and two-phase clock.
A “one” indicates that a one-phase external
clock has been selected.

OUTPUTS

OUTPUT The output for the encoded channel symbols.

PHI10UT Output of first phase of the internal two-
phase clock. If a two-phase external clock
has been selected (CLKSEL=0), then this is
the same as PHI1IN.

PHI2OUT Similar to PHI1OUT for the second clock
phase.

Sl Indicates when the commutator is scanning
the first parity check.

S2 Indicates when the commutator is scanning
the second parity check.

53 Indicates when the third parity check is
being scanned. In the case that a rate 1/2
code is selected, S3 is always zero.

P10UT The first phase of the shift register advanc-
ing clock.

P20UT The second phase of the shift register ad-
vancing clock.

X#9 The output of the shift register. This is

simply BITIN delayed by 10 bit times.

As implemented, there are two ways of getting clocking
information into the chip. A two-phase clock can be wired to
the device by using PHI1IN and PHI2IN and grounding the
input CLKSEL. Also, a one-phase clock can be used on the
CLOCKIN input. In the latter case, the input pin CLKSEL
must be wired to voltage. This two-choice system is possible
because a two-phase clock generator has been included in the
chip itself.




A timing diagram that shows the relationship between the
time-varying signals is shown in Fig. 2. It is assumed, for the
moment, that the selected code rate is 1/3. Notice that the
clock frequency must be P times the input data rate (recall
that P is the inverse of the code rate). The data that is entered
on pin BITIN is clocked through the shift register by the sig-
nals P1 and P2. P1 and P2 are simply the logical “and” of S1
and the signals PHE1 and PHI2 respectively. The data in the
register will remain stable during the three clock times that it
takes to scan the three parity checks. The particular parity
checks that are scanned are also functions of the input signal
SEVEN. The signals S1, S2, and S3 represent the position of
the commutator. It is important that the input bits must be
synchronized with the commutator so that a new bit is en-
tered whenever P1 is high. The output symbols on the pin
OUTPUT are synchronized with PHI2. Since all the impor-
tant timing signals are available as pins, it would be an easy
task to interface this chip with data sources.

In the case that the selected code rate is 1/2, then the
clock frequency is twice that of the input data rate and the
signal 83 is always low. This case is indicated in the timing
diagram of Fig. 3. -

Although the actual clock speeds of the chip cannot be
determined until the fabricated device is tested, it is likely that
a maximum clock rate of at least 1-2 MHz will be achievable.
Such clock rates are nominal for the NMOS technology that is
being used for this project.

lll. Chip Architecture

The VLSI multicode convolutional encoder logic is divided
into two major sections. The first is the timing signal generator
and the second is the convolutional encoder array.

The timing signals that were described in Section II are
generated in the timing signal generator subblock. A program-
mable logic array (PLA) (Ref.6) is used to implement a
counter for generating the commutator signals S1, S2, and §3.
If the input “1/3” is high, then the counter is set to count
modulo three. If “1/3” is slow, then it counts modulo two. P1
and P2 are generated by ANDing S1 with PHI1 and PHI2
respectively. This subblock also contains an output latch that
synchronizes the output channel symbols with the signal PHI2
before they are sent to the output pad OUTPUT.

The actual encoding takes place in the convolutional en-
coder array subblock. It is shown conceptually in Fig. 4. This
figure also indicates the geometric layout of this section of the
chip. The input bits from BITIN are shifted through the ten-
bit parallel output register shown along the bottom of the fig-
ure. The output of each register cell is available at the top as

well as the right end. Above each cell are six blocks, each of
which is either a PRTY (or “parity”) ceil or a NPRTY (or “no
parity”) cell. Each row of parity cells corresponds to a partic-
ular parity check on the ten outputs of the register. The pres-
ence of a PRTY cell in row i and column j means that the ith
parity check has a tap at position j in the register. The top
three parity checks are for the (10, 1/3) code. The lower three
are for the (7, 1/3) code. The (7, 1/2) code uses the first two
parity checks from the (7, 1/3) code.

The parity checks are not implemented as exclusive OR
operations as is done in a conventional encoder. Instead, there
are two signal paths through each row of the parity check ma-
trix. At the extreme left of the array, a “one” is connected to
one of these and a “zero” to the other. Each time this pair of
signals passes through a PRTY cell, they exchange places if the
output of the corresponding register cell is a “one.” A NPRTY
cell has no effect on these signals (circuit diagrams for these
two cells appear in Fig. 5). In this way, the pair of signals has
gone through a number of path exchanges equal to the number
of ones in the shift register at the taps that correspond to that
particular parity check. If the parity is even, then the signals
are in the same place as when they started. If the parity is odd,
they have come out reversed. Also, since a complementary pair
of signals is used, the complement of the parity check, as well
as the check itself, is available at this point.

The signals NRM1, NRM2, and NRM3 are used to select
either the parity information or its complement at the end of
each row of the parity array. The signal SEVEN is then used to
select either the top three or bottom three parity checks. The
commutator is implemented as a multiplexer in which the
signals S1, S2, and S3 are used to select the appropriate parity
check.

This architecture is a good example of how an algorithm
that works well in a SSI system is not nearly optimal in VLSI,
In the conventional encoder, it would be impractical to pro-
vide all the interconnections that are necessary for implement-
ing the above algorithm. This VLSI architecture is compact,
fast, and easily extendable to longer constraint lengths and
more parity checks. In fact, it would be a relatively simple
matter to write a silicon compiler (Ref. 7) that would auto-
matically lay out masks for simjlar encoders for arbitrary sets
of convolutional codes.

It should be mentioned that the overall size of this chip was
determined by the number of pads rather than the size of the
logic. This means that there is some extra space available.
Some of this space is filled with a long array of “butting con-
tacts.” A butting contact is a structure for connecting the
polysilicon and diffusion layers in NMOS,. There is some doubt
as to whether this structure will work reliably in the 2.0-

63




micron NMOS technology. By including this test array it will
be possible to gather some additional data on this subject. The
two ends of the array of contacts are connected to the pins
BUTT-TEST1 and BUTT-TEST?2. It should be noted that the
butting contact was not used in the remainder of the chip.

IV. The Design Process

The multicode convolutional encoder chip was designed
according to the NMOS design rules that appear in Ref. 6. The
design philosophy was influenced by the JPL VLSI design
course as taught by Dr. G. Lewicki and Dr. R. Nixon.

The actual chip layout was performed using the interactive
graphics editor “CAESAR” that was developed at the Univer-
sity of California at Berkeley by Dr. J. Ousterhout (Ref. 8).
This software design system allows the user to develop a chip
in a hierarchical fashion with full editing capabilities. There
are also a number of programs including a PLA generator and
optimizer that can be used in conjunction with CAESAR. A
picture of the finished layout as produced with CAESAR ap-
pears in Fig. 6. The UC Berkeley software also includes a cir-
cuit extractor called MEXTRA that works in conjunction with
CAESAR to create a file that can be used with a number of
simulation packages. One very nice feature of the extractor is
that it keeps track of labels that the user creates with
CAESAR so they can be referred to during simulation. A com-
plete description of the Berkeley software can be found in

64

Ref. 9. The chip was completely simulated on a logical level
using the program ESIM that was developed at the Massachu-
setts Institute of Technology. Although it was not used for
this project, the circuit level simulator SPICE (Ref. 10) is also
integrated with CAESAR and MEXTRA.

V. Conclusions

It is evident, even in a simple project such as this one, that
VLSI technologies allow the implementation of much more
efficient algorithms than conventional circuit design. This is
because all intermediate signals that are generated in a circuit
can be made available to other portions of the circuit without
a proliferation of pins and drivers that can greatly reduce the
computational speed of the system.

The chip described here was sent out over the ARPANET
for fabrication on December 2, 1982. When the completed
chips return they will be evaluated and tested.

These chips will probably be used as test function genera-
tors in research on convolutional decoding. They will not be
radiation hardened and so they cannot be flight qualified.
However, the architecture described in this article could be
easily used to produce flight qualified chips if the need ever
arises. Also, the experience gained on this project will be
invaluable in the design of the complex decoding systems
that are planned for future projects.




10.

References

. Layland, J. W., “Information Systems: Performance of Short Constraint Length Con-

volutional Codes and a Heuristic Code-Construction Algorithm,” Space Program
Summary 37-64, Vol. II, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 1970.

. Miller, R. L., Deutsch, L. J., and Butman, S. A., On the Error Statistics of Viterbi

Decoding and the Performance of Concatenated Codes, Publication 81-9, Jet Propul-
sion Laboratory, Pasadena, Calif., Sept. 1, 1981.

. Liu, K. Y., and Lee, J. J., “An Experimental Study of the Concatenated Reed-

Solomon/Viterbi Channel Coding System and Its Impact on Space Communica-
tions,” Publication 81-58, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 15,
1981.

. Deutsch, L. J., and Miller, R. L., “The Effects of Viterbi Decoder Synchronization

Losses on the Telemetry Receiving System,” TDA Progress Report 42-68, Jet Propul-
sion Laboratory, Pasadena, Calif., Apr. 15, 1982.

. Deutsch, L. J., and Miller, R. L., “Viterbi Decoder Node Synchronization Losses in

the Reed-Solomon/Viterbi Concatenated Channel,” TDA Progress Report 42-71, Jet
Propulsion Laboratory, Pasadena, Calif., Oct. 15, 1982,

. Mead, C., and Conway, L., Introduction to VLSI Systems, Addison-Wesley Publish-

ing Company, Reading, Mass., 1980.

. McNair, R., and Miller, M., “Bristle Blocks — Scrutinized and Analyzed,’v’ Computer

Science Department Display File, California Institute of Technology, 1982.

. Ousterhout, J. K., “Caesar: An Interactive Editor for VLSI Layouts,” VLSI Design,

Volurae 11, No. 4, Fourth Quarter 1981.

. Fitzpatrick, D. T., et al., “A RISCy Approach to VLSL,” VLSI Design, Volume 11,

No. 4, Fourth Quarter 1981,

Negal, L. W., and Pederson, D. O., “SPICE — Simulation Program with Integrated
Circuit Emphasis,” Memorandum No. ERL-M382, Electronics Research Laboratory,
University of California, Berkeley, April 12, 1973.

65




010203 [
D) De o

66

a,b,a,bya0b, . L iIi2i3"‘
1°192°%2%"3 [ | - - - <
COMMUTATOR
/ /'\ \
~ FamY
+ J + - + - + -
bibobg o . o ~ ~ ~
1°2°3
= ONE BIT TIME @ = MODULO TWO
DELAY ADDER

Flig. 1. Conceptual diagram of a (7, 1/2) convolutional encoder

Y s VY S VNUY S WY S U s VY W

PHI 2 / \ / \ / \ / \ / \

S1 - \ / \

s — [\ / \

53 —J \ /
Pi - \ [\

P2 / \ _J \

BITIN = X

OUTPUT e ) Gl X X X

Fig. 2. Timing signals for the convolutional encoder, rate 1/3 codes




SR s WY e WY VY VY f WY W

PHI 2 I y \ I\ J\ — \

O e VY S WS [ V.
52 ______/_—\____/__——\__——-[_—

$3

P — \ J \ J \

P2 / \ J \ — \
BN — X X

OUTPUT ——— X X X XC

Fig. 3. Timing signals for the convolutional encoder, rate 1/2 codes

67




—N® Z
222 &
ZZZ b
i SIBOLS
upn — L] e - - ] ——
agn PRTY NPRTY - NPRTY || PRTY - PRTY || PRTY || NPRTY NPRTY || NPRTY | PRTY L [~ =] o
o
rr— 1r 1r. 11 11 1° 11 11 1f 1] 9
wyn od ] |eemed w
:)__» prry [ Inerry [ prry [INerty [ erry [] ey [] erry [ NeRTY[ [ ety [ eRY [ b 5 bl &
| 1 | ] - 1 1 | 5 5
11 [ [ || [ [ il LI [ [ & & 2
1 || || ] |1 ] | ] uZJ ,:E
PRTY PRTY PRTY NPRTY PRTY PRTY PRTY PRTY NPRTY PRTY = o M
||0||_> — — —-— =1 =1 - ] l.'l_l'J z
W
[ 1 [ [ [ [ [ ] [ ] | | | [ 3 .'_‘ftf
L L. e e — - — - S | ] 8 Z
PRTY PRTY PRTY NPRTY PRTY NPRTY PRTY NPRTY NPRTY NPRTY -1 s N
NG ] | - ] ] - - - L - | t é v
. rr 1 11 Il Il [ ] I I 2 2 | TN
upn - — _— — a— — - > 9 OGlI
erry || PRTY [ | errv [ | Rty [ |nerry[ | NerTY [] PR [ |KieRTY [ | NPRTY [ | NPRTY L] O | lOCk
uon_» —_— — —— —— — oo —  — |
[ [ ] [ | [ [ [ [ [ [ | [ ]
l|'||| ] — - — o] | — — — —_
PRTY NPRTY PRTY PRTY NPRTY PRTY PRTY NPRTY NPRTY NPRTY Tt
WO o] — ] — — - - — — -
BITIN
— L — — — — — ot - i — X f9

Fig. 4. Conceptual diagram of the encoder logic array

3

I I

1|
)

T a7
T

Lr— _—11

T

_L__..
1

|
§
>
|
|
I
!

PRTY NPRTY

Fig. 5. The PRTY and NPRTY cells

68




| 1INIJ01I

69




