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In a recent paper Pierce considered the problem of optical communication from a
novel viewpoint, and concluded that performance will likely be limited by issues of
coding complexity rather than by thermal noise. This paper reviews the model proposed
by Pierce and presents some results on the analysis and design of codes for this

application.

I. Introduction

In a recent paper Pierce (Ref. 1) considered the problem of
optical communication from a novel point of view. He showed
that for optical frequencies and low temperatures, the maxi-
mum signaling rate will be determined by coding complexity
issues rather than by thermal noise. He exhibited one simple
coding scheme (referred to below as a type 1 code), and
challenged future workers to go further. This paper is a
response to that challenge.

In Section II, we will describe the model Pierce arrived at as
an appropriate description of the optical communication
problem. It will be seen that Pierce’s model is the familiar
Z-channel. A complication arises because in Pierce’s model the
transmission of a “1” (which corresponds physically to the
transmission of photons) is more costly than the transmission
of a “0” (no photons). After some fairly simple analysis, we
conclude that an appropriate figure of merit for a binary code
{x;, ..., Xy Iwhich is to be used on Pierce’s channe] is
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where w(x) is the Hamming weight of the codeword x;, and d,,
is the minimum asymmetric distance of the code. (The term is
defined precisely in Section II).

Calling the first term on the right side of Eq. (1) R,, in
Section III we show that R, is largest for Pierce’s type 1 code.
In fact, we show that R < [(n + 1)/n] log (n + 1), with equal-
ity only for type 1 codes. On the other hand, Pierce’s codes all
have d, = 1, and in Section IV, we exhibit several codes with
larger d, which are in a certain sense superior to Pierce’s codes.

Finally, in Section V, we prove the existence of a sequence
of codes for which Q grows linearly with the block length n.
(For Pierce’s codes Q grows only logarithmically.)



ll. The Channel Model

The channel model arrived at by Pierce (Ref. 1) can be
described as follows. At the transmitting end there is a light
source and a shutter, and at the receiving end there is a photon
counter. To transmit a binary sequence X = (x,, ..., x,)
over this channel in T seconds, we divide the time interval into
n equal segments of duration T/n; we close the shutter during
the i-th time interval if x;=0, and open it if x,=1. The
receiver’s estimate of x; is O if no photons strike the photon

counter during the appropriate interval, and 1 if one or more -

do. Assuming that the expected number of photons emitted
by the light source during an interval of length T/n is A, the
probability that a transmitted 1 will be detected as a Qis e~}
because of the Poisson nature of photon emissions. Of course
if no photons are transmitted, none will be detected, and so
this channel is the Z-channel depicted in Fig. 1. Furthermore
it is assumed that there is a unit energy ““cost” associated with
the transmission of each photon. The basic coding problem
here is to study the trade-off between the transmission rate
measured in nats per photon) and the decoded bit error
probability.

Suppose we wish to communicate over this channel using a
binary code {X,,..., x,} of length n with M code words.
The rate of the code is log M nats' per code word. On the
other hand the expected number of photons required by the
i-th code word is Aw(x;), where w(x,) denotes the Hamming
weight of x;. Hence (provided each code word is transmitted
with probability M~1) the average number of photons required
per code word is

M
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Hence the transmission rate, measured in nats per photon is

1 MlogM
A M 2)
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The quantity in brackets in Eq. (2) depends only on the code,
and we call it the asymmetric rate of the code:

R =

. MlogM
Ry = ——— 3

M
Z w(x,)
i1

1Throughout, all logarithms will be natural.

We have now defined the transmission rate of a code for
our channel model. We now need a measure of the code’s error
correcting ability. To this end we are led to define the
asymmetric distance between two binary n-tuples x=
Geyyooosxy)and y=(vq,...,»,). Let r denote the number
of coordinates where x; =1 and y; =0, and s = number where
x;=0and y, = 1. Then we define

d, (x,y)=max (r, 5) 4)

This distance plays a role for asymmetric errors analogous to
that played by the Hamming distance dy(x, y)= r+s for
symmetric errors. The main result is the following.

Theorem 1: If the minimum asymmetric distance between
distinct code words is d,, then the code is capable of
correcting any pattern of d, - 1 or fewer asymmetric errors.
(N. B. An asymmetric error is an error of the type 1 - 0. The
symmetry of the definition in Eq. (4) implies immediately the
curious fact that any code capable of correcting d, - 1
*“1 =07 errors will also correct d, - 1 “0 > 17 errors.)

Proof: We begin by considering an example:

x=1111110000000
y=0000001111111
N, s gttt v’

r N

If x is transmitted over the Z-channel of Fig. 1, can it be
mistaken at the receiver as y? Clearly not, unless each of the
I’s in x is received as O, since the presence of a 1 in the first »
received components would immediately rule y out. (The
transition 0 - 1 is impossible.) Hence, the smallest number of
errors that could possibly cause confusion is r. If then x is
received with these r errorsasx' =0000000000000, x’
differs from x in r positions and from y in s positions. If the
decoder picks the vector for which the number of disagree-
ments is smallest, an error is possible only if r 2 s (and certain
only if »>>s). The conclusion is that if x is transmitted, an
error is possible only if at least r errors occur, and r=>s.
Similarly if y is transmitted, an error is possible only if at least
s errors occur, and s 2 r. This shows that the code consisting
of only the two code words {x, y} can correct any pattern of
up to max (7, s)- 1 =d, (x,y) - 1 asymmetric errors. Finally
if the code has M code words {x,,. .., Xy}, and d,=min {d,
(x;, x;): i #j}, the above argument shows that no pattern of
d, - 1 or fewer asymmetric errors can possibly cause one

a
transmitted code word to be mistaken for another.
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Now consider the decoded error probability Py of the code
{X;, ..., Xz}, when it is used on the channel of Fig. 1. Py is
given by a complicated expression of the form

where B; is the set of error patterns which causes decoder
error, when x; is transmitted. Theorem 1 implies that
w(z) =d, for all

and so in the limit as A - oo, the sum on the right side of
Eq. (5) is dominated by the terms of the form e~ Mg je.,

1
lim —
Ao )\

logP, = -d, (6)
where d,, is the code’s asymmetric minimum distance. If now
we define the parameter y to be the number of photons per
nat required by the code (this is a sort of normalized energy
budget, analogous to the bit signal-to-noise ratio on the more
familiar Gaussian channel), we get from Eq. (2) that A= R 7,
and Eq. (6) becomes

lim llogPE = -R d (7)

0 a
Y>>

Hence we are led to define the following quantity Q for any
binary code, which is a measure of its asymptotic effectiveness
when used on our photon counting channel:

Q=R ®

a
In summary: the bigger the code’s “Q,” the better we
expect it to be.? In the next section we will show that R,
< [(rn + 1)/n] log (n + 1) for any code of length n + 1. In Sec-
tion IV, we give some examples of binary codes with fairly
large “Q.” Finally in Section V we demonstrate that as a func-

tion of n, the code length, the best possible Q grows linearly
with n.

2For the Gaussian channel, the corresponding number is R « dp;, where
R is the ordinary dimensionless rate of the code, and dyy is its
minimum Hamming distance.
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lil. An Upper Bound on R,

In view of the definition in Eq. (8), it is clearly important
to know how large the asymmetric rate R, (see Eq. 3) can be.
Theorem 2, below, shows that R, can be no larger than
(1+nlog(n+1).

Thus let C = {x, x,,..
length #. Define

., Xy} be any binary code of

MlogM

M
Z w(x,)
i=1

Ry(O)=

Theorem 2: R,(C) < [(n + 1)/n] log (n + 1), with equality
if and only if C consists of the n + 1 words of weight < 1.

Proof: Let y,, y,, ... be an ordering of the 2" binary
vectors according to increasing weight: 0 = w(y;) <w(y,)
< ... S<w(y,,)=n If C= {y;i el}is any code with [I|= M
code words, then clearly the code C' = {y;:i <M} must sat-
isfy Ry (C N> R, (C). Thus, for the remainder of the proof
we focus our attention on the codes Cpy = {y,,¥,,...,¥Yu}
forM=1,2,...,2" If we let py, = R((Cyy), the assertion of
the theorem is that p,,, as a function of M, is maximized for
M=n+1.

Let M be a value of M that maximizes p,4. Our first result is
that if we define, foreachk=0,1,...,n,

w3 () o

we must have M e{M,, M,,...,M,}. To see this suppose that
M <MIM,,,letx=M- M,,and observe that p,, is given
by

M +x)log (M, +x)
w, +(k+1)x

oy = F(x) = (10)

where

we =2 (")

j=0

Suppose pyy = max (opr,» pMk+1). Then the function f (x),
viewed as a continuous function of the real number x, would
have a maximum somewhere in the interval {0, (kzl)], ie.,
f'(x) = 0 and f"'(x) < 0. But from Eq. (10) one easily sees that



] N 1
@ e
log (M, +x)

1+ [wk"(k'*'l)Mk] m 11

From Eq. (11) it follows that f'(x) = 0 can only occur if the
equation

log (M, +x)

——— = ]
w, t(k+1)x

[(k+ DM, - w,] (12)

is satisfied. One easily verifies, however, that if Eq.(12) is
satisfied, then f'(x)= (M + x)™' [w, + (k+ 1)x]~1 >0;
hence, f(x) has no maximum for x > 0. Thus py, < max(pMk,
Pup k+1)’ and we have shown that the largest value of p,,
occurs forMe {My,M,..., M, }.

It remains to show that the maximum of p (C, k) occurs at
k = 1. To do this, define

T, =M, logM, (13)

and let k¥ = 1 be an index that maximizes the function
p(CMK)= TK/wk. Then in particular T, /w, > T [We s

substituting w, | = w, - k(’;) into this inequality we obtain

w (T, - T,_ )= k(T, (14)

kY k k

But Ty~ Ty =M logM, - M, _ log M, _, = [())+M;_,]
log My - M, log M, _, = (}) log M + M;_, log M /My_ ).
Using the elementary inequality log x < x - 1, we thus obtain
Ty~ Ti_y < (3) (1+log M,). Substituting this into Eq. (14)
we obtain 1+ log M, = kT, /w,. But since k is presumed to
maximize the ratio T /w,, it follows that T /jw, = T, /w, =
[(n +1)/n] log (n + 1) > log n. Hence, from Eq. (14) follows

1 +logM, <klogn (15
g M, g

Equation (15) is a strong necessary condition on the optimiz-
ing parameter k; it cannot be satisfied unless k=1 or 2, or
k =3 and n < 2, as we shall now see.

Bv-a well-known inequality (Ref. 2), we have

n2+n+

long<klog%+(n— k) log P ilk

=klogn-klogk+(n-k)log (1 +n—]f];)

(16)

Again using the inequality log x <x - 1, we get from Eq. (16)

logM, <klogn-klogk+k an

It follows from Eq. (17) that 1 + log M, < k log n, provided
k < klog k- 1. This is true for all k¥ > 4, and hence Eq. (15) is
not true if k = 4.

If k = 3 we compute directly that M, = (n3 + 5n + 6)/6,
and hence Eq. (15) is false for k=3 and all n = 3.

Thus we have shown that for n > 3, the optimizing value
for k must be k = 1 or k = 2. (The verification that Theorem 1
is true for m =1 or 2 is trivial). We now conclude our proof of
Theorem 1 by showing that Ry (Cpr,) <Ro(Cpr, ). Since M, =
(n2+n+2)2, w, = n?, M; =n+1,w, =n, this is equivalent
to

nt+n+2 o n>+n+2
2 L)

<nn+1log(nt+l) (18)

Forn>1,n* +n+2<(n+1)2, and so the left side of Eq.
(18) is upper bounded by

2 2
" +;+2log(n+21) = (m?+n+2)logn+1)
- 10_%2_ (n2 +n+2)

This is less than the right side of Eq. (15) since

5 2log(n+1)~l—O£L2(n2+n+2)—n(n+1)log(n+1)

= 210g(n+1)——12§—2(n2+n+2)

and log (n + 1)/(n* + n + 2) < (log 2)/4 for all n > 2. This
completes the proof of Theorem 1.
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IV. Examples

Example 1: In the previous section we saw that the code of
length n with 1 word of weight zero and n of weight 1
(hereafter called a zype I code) has the largest possible R,
among codes of length n. Clearly d, = 1 for these codes, and so
from Eq. (8), the coding gain @ is given by

n

Q= ’:llog(n+1) (19)

Surprisingly, it is quite difficult to find codes of length n for
which Q is larger than this, for small values of n.

Example 2: Consider the extended (24, 12) Golay code.
The average weight of its code words is 12 (this follows from
the general theorem that any linear code of length n whose
generator matrix has no zero columns has average weight n/2).
Hence from Eq. (3) R, = log 212/12 = log 2. It is well-known
that the minimum Hamming distance of this code is 8, i.e., if
and s are as in Eq.(4), r+ s> 8; and hence d, >4 for this
code. In fact one can also show that d, = 4 for the Golay code,
and so

Q=41log2=2.7726

Note that a type 1 code with n =12 has 0 = (13/12) log (13) =
2.7787, which exceeds that of the Golay code. The type 1
code with n = 24 has Q = 3.3105, so that whatever desirable
properties the Golay code may have in ordinary circumstances
are certainly lost in the present application.

Example 3: Let C be the (128, 64) extended BCH code,
with dy; = 22, hence d, > 11 (actually d, = 11). Then as above
the average weight is 64 and so

0= 111log2=7.6246

This is better than the type 1 code with n = 128, which has
only Q= 4.8978. Indeed, one needs n:=>2041 in order to
exceed Q = 11 log 2 with a type 1 code.

V. The Existence of Codes With Large Q

In the last example of Section IV, we saw that it is possible
for the best code of length # to have a value of Q which is
larger than (1+ 1/n) log (n+1). In fact, if we denote the
largest possible Q for a code of length n by Q,,, we can show
that Q,, grows linearly with n. Specifically, we shall show in
this section that
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0.052 < liminf ¢

n-—oo n

‘RQ

7 < limsup —2 < 1.39  (20)

n-—>oo

S

(Note: The implied logarithms in Eq. (20) are natural
logarithms.)

First we derive the upper bound in Eq. (20). From Eq. (4)
we know that the asymmetric distance d, of a given code is
less than or equal to the Hamming distance, d, and so by
Egs. (3) and (8) we have

0< log M . dH @21

Lo
1172 w(x,)
i=1

for any code {x,, X,,..., X3y} of length n. Let us view this
code as an M X n binary array, and let s, denote the number
of ones in the k-th column of this array. We now compute the
sum Zd(x;, xl-) over all distinct pairs i <j in two ways. On one
hand it is > (];'I)dH, since d(x;, xj)> dy; for all i #j. On the
other hand, a pair of entries (x;, X;;) in column k contribute
1 to the sum if and only if x;; # x,;. Thus

(gl)dM < Z d(xi, xl.) = E sk(M - 5)
=1

i<j K
n
=MY s, - ), s (22

Now

n M
E Sk =Z w(x;)
k=1 i=1

and by Schwarz’s inequality

4 1
E S,zc 22(2 Sk)2
k=1

Hence, if we denote

L
WZ w(x,)
i=1



by w, Eq. (22) yields

. d
w(l - w)>1,—”—m-l . n” (23)

Denoting the ratio dy;/n in Eq. (23) by 8, and using the fact
that (M~ 1)/M < 1, Eq. (23) gives

1-v1-28

Using Eq. (24) in Eq. (21), we obtain

log M 2

o<
no1-JT-26

In Eq. (25) the term (log M)/n is the rate of the code. If we
denote by R(n, d) the rate of the largest code of length 7 and
minimum Hamming distance d, and for 0 <§ <1

< on (25)

R(8)=sup limr(n, d,)

n—»oo

where the “sup” is over all sequences (d, ) such thatd, /n =8,
it follows from Eq. (25) that

imsup 22 < sup —R®
= 1-1-25

now N 5

.5 (26)

Now the function R(5) is not precisely known, but using the
well-known Plotkin bound

R() < 1-26 0<5<%

1
= = -
0 3 5

we find that (letx =/ 1-2§)

limsup — < sup (x?+x%)=2 27N
n—oe N o<x<1

Finally we make a small correction in Eq. (27). The rate of a
code, R = (1/n)log M, is usually defined for base 2 logarithms,
and so our bound in Eq. (27) is a bound using base 2. Recall-
ing that our assertions in Eq. (20) are base e, we must replace

2= log, (4) with log, (4) = 1.386. Hence we have, finally,
one-half of Eq. (20), viz,

2,
n

lim sup < 1.386

n—oo

It remains to prove the lower bound of Eq. (20). To do this
we consider the class of constant weight codes. A code C=
{X;, X,,..., X} is said to be a constant weight code of
weight w if all code words have weight w. For such a code the
formula for Q simplifies:

- logM . d (28)

w a

Q

Or since we know that d >d H/Z,

> log M

0> d (29)

w H

Now according to the Gilbert bound for constant weight codes
for any & and « satisfying

0<5$ <—:12—

there exists a sequence of constant weight codes with (length,
minimum Hamming distance, weight) = (n, d,,, w, ) such that
d,/n—>8, w,/n—>a and with rates at least R(5, a) = H(a) ~
2H(8/2a) - (1 - a)H[5/2(1 - a)], where H, (x) =-xlogx - (1
- x) log (1 - x) is the entropy function. Using this result, we
see from Eq. (29) that

lim inf (2 > RG.a) . 8

now N o 2 GO

for all choices of a and §. The maximum of the function on
the right side of Eq.(30) can be found numerically. It is
0.052, and occurs at § =0.06, a = 0.264. Hence

lim inf 0

n—+oo n

> 0.052

as asserted in Eq. (20).
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Of course the bounds in Eq. (20) are very far apart and it
would be desirable to improve them. One obvious weakness in
our technique is that we nowhere deal directly with the
asymmetric distance d,, but use instead the weak bounds

dy/2< d, < dy. It would be highly desirable to develop
techniques for constructing and analyzing codes with good
asymmetric distance properties, for both theoretical and prac-
tical reasons.
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Fig. 1. The Z-channel
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