Doppler Phase-Noise Measurement
Using Mean-Sweep Techniques

R. C. Bunce

Network Operations

This paper describes an investigation leading to techniques to reduce the error
present in the DSN station measurement of doppler phase-noise variance and
standard deviation. The error source of concern is the doppler counter resolver,
which sorts continuous phase data into finite group intervals. The intervals are
8.5 deg (1 MHz bias) or 18 deg (5 MHz bias) wide.

Counter operation is covered to define parameters, and then appropriately
limited model functions for the variance, its estimate, and the error are stated. The
model introduces linear and sinusoidal mean-sweep functions to investigate their
effect on the error.

Machine-programming of the model yields results which indicate that mean-
sweep significantly reduces the measurement error when phase-noise standard
deviation is low (less than 2 deg at 1 MHz bias, or 10 deg at 5 MHz bias). Linear
sweep is the most accurate technique, but sinusoidal sweep is recommended as the
more feasible; errors with the latter do not exceed 0.15 deg rms (1.0 MHz bias)
in the region of interest.

Finally, the recommended parameters and the expected residual error are stated
for use in test program configuration and data reduction; the error is asymptotic
to a universal constant variance offset which can be appropriately subtracted to
compensate for the group interval width at all noise levels.

l. Introduction

Present doppler phase-noise measurement techniques
yield reasonably accurate estimates when the noise
standard deviation (sigma) exceeds 2 deg rms (1.0 MHz
bias) or 10 deg (5.0 MHz bias). However, when sigma is
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smaller than these values, the estimate obtained is in-
creasingly variable with certain initial conditions, be-
coming practically meaningless below 1.0 deg (1.0 MHz
bias) or 5.0 deg (5.0 MHz bias). Sigma levels within these
regions are encountered in strong-signal coherent S-band
test modes and X-band operations and test procedures.
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An initial condition of interest in this region arises from
the finite time-resolution of the doppler counter resolver.
The resolver estimates the time-position of waveform
zero-crossings, which form a continuously distributed set
when random noise is present. The mean value of this
set is, however, stationary with respect to adjacent
resolver pulses when these pulses are time-coherent with
the bias period, the usual test case. The time difference
between the mean-value zero-crossing and the adjacent
(earlier) resolver pulse, its estimate, is an error variable
with initial conditions and cannot normally be predicted.

As this initial offset varies, the final estimate of sigma
varies, When sigma is small, this variation is too large to
vield meaningful measures with confidence. However, if
this initial offset is intentionally varied by a known “mean-
sweep” function during data collection, the error will tend
to average, and the total possible variation will presum-
ably decrease. The following discussion investigates this
possibility in detail by modeling the resolver behavior
during application of various sweep forms.

Il. Doppler Counter Operation and
Measurement Model

Doppler phase-noise measurement in the DSN stations
is done by processing a set of doppler counter samples.
Reduction of this data set yields an estimate of random
phase-noise variance of and/or standard deviation oy.
The latter is simply the rms value of the noise.

The variance and standard deviation depend on signal
strength, mode of operation, system temperature, system
noise, and many other factors. Doppler noise standard
deviation is as low as 1 or 2 deg or less under
strong-signal coherent conditions, when system noise is
minimized.

The actual noise data extracted from the counter sam-
ples is a residual on the order of 1 X 10~ of the phase
accumulation between samples. The total differential
phase between each sample is primarily the counter bias
phase-accumulation over the sample period 7. The ac-
cumulation is normally between 10° cycles and 10° cycles,
depending on the period + and the bias frequency B. At
the end of cach sample period, the accumulated total
cycle count (since reset) is read out as an integer. The
readout is not the differential phase; the counter acts as
a continuous digital integrator, summing these differen-
tials. In addition, the counter is mechanized to obtain
meaningful residual data by means of a resolver that
measures (each sample period) the time position of the
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final waveform (positive-going) zero crossing of the
period, within a resolution of 10 ns (Ar). The resolver
tabulates the number of 10-ns intervals, an integer K. This
integer is also read out and understood as an estimate
(Ka7) of the true resolver period AT between the timing
pulse that ended the sample period (¢,) and the time of
the final positive-going zero crossing (t.). The period Kar
is not precisely equal to AT, and thus is not correct, for
the tabulation is stopped at ¢,, which normally occurs at
some point between discrete resolver increments KAr
and (K + ].) A,

Expressed quantitatively,

t,=t,+ AT

=t,+ Kar + 8T
0<8T < Ar (1)

where

AT = true time increment from ¢, to the zero cross-
ing ¢,

Ar = fixed resolver time increment, 10 ns
8T = error of KAr in measuring AT

K = resolver increment index or count
The quantity of interest is the residual phase ¢,, which
is the (accumulated) difference between the true phase
and the nominal phase due to bias alone. This can be

expressed as a frequency integral yielding the integrated
integer I described above:

tp+ AT .
I= / [B — ¢r(t)] dt
to
fp+AT .
g
= B[(t, — t,) + AT] — ¢z
where t, = time of first zero crossing after reset.

The nominal, due to bias alone, is

tp+ATo
I, = / Bdt = B[(t, — t,) + AT,]
t

[

where £, is repeated; the start time is theoretically
irrelevant. Or
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(I-—IL)=aAl=B8B

¢R~] du(t)d

Although actual mechanization restricts AT to a range
of values, with small differences of AI completing the
relationship, it simplifies the model, without loss of gen-
erality, to assume I and I, equal, with AT having com-
plete freedom. This lead to

[AT — AT.] — ¢r

¢r = B[AT — AT,]

= B[KAT — K()AT] + B[ST - ST”] (2)
By similar development, the estimate of ¢, p can be
shown to be

ér = B[(K — K,) ar]

tp+ KAT+OT

= e — (3 — 30) + / bt (@3)

tp+ KAT

The integral is considered negligible; residual fre-
quency components are too small to build up any
appreciable value over the short time span. This yields
(in parallel with ¢)

B[K it KO] AT = ¢1¢ '“
— (8¢ — 3¢bo)

~
br =
= ¢r

B(8T — 8T,)

These stable forms allow a convenient scaling; it is to
set K, = 0 (shift the index origin to K,) and simultane-
ously define the phase of the set of resolver levels ¢x by
the notation

ér = Kag — 3¢y 4)
where
A¢ = BAr = 3.6deg (1 MHz) or 18 deg (5 MHz)
and

8¢ = B8T, = the offset of mean ¢, from the nearest
lower resolver level

These combine to

$r = ¢x T 8¢
$R = ¢x t+ 3¢, = KAo (5)
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where

K=, -2 1,012 -

— o <op< + »

The residual phase argument ¢, consists of all devia-
tions from nominal bias phase. To further limit the
discussion, consideration will be given to only two con-
tributions; all others will be assumed negligible. The two
are:

(1) Intentional, known, and deterministic deviations of
the true mean from the nominal (bias) mean.

(2) Random phase noise, assumed stationary, gaussian,
and normally distributed, with variance o%.

With these, ¢, becomes

dr=¢ t+ ¢
where

¢ = intentional mean displacement of the entire ¢
distribution from nominal

¢ = phase-noise displacement from ¢ at any instant
of measure

The phase quantities above and their time equivalents
are diagrammed in Fig. 1, with a superimposed typical
phase-noise probability density function. Note the actual
measure ¢ at time t. occurs between resolver levels ¢,
and ;. The (index-shifted) resolver readout would be the
“K” index of ¢., equivalent to KA¢ of $,¢, or “4,” and any
zero-crossing in the shaded area A, would yield this read-
out. The area A, thus represents the probability of
the reading 4A¢; other area probabilities would occur
similarly.

After observation of Fig. 1, it becomes apparent that
the various probability areas, such as A, shown, vary for
given ¢ if the mean dimension ¢ is varied, and that this
will certainly not degrade the data if the mean variation
is known.

The effect of sweeping is actually to vary the location
of all P(¢) with respect to the {¢x}. Various initial 3¢,
will thus obviously alter the result, since the ¢x are a
function of 8¢,. In fact, the purpose of mean-sweep is to
eliminate or reduce the error due to arbitrary initial un-
known 8¢, with a compensating, known, and averaging ¢
function.
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At the extreme, without sweep, if the entire P(¢) (of
small variance) were (essentially) confined within one
resolver level, then only a single reading would occur
with high probability. The variance estimate would then
be (nearly) zero. However, moving the mean would shift
the distribution into various levels, and at least some data
would seemingly be meaningful after mean-shift sub-
traction and other processing.

The effects of mean-shift by various deterministic func-
tions is difficult to determine analytically because the
P(4) integral is transcendental. However, these effects can
be readily modeled for machine computation, and this
approach prevails in the remainder of the discussion.

I1l. Resolver Error Model Function
and Mean-Sweep

Variance is estimated from data as the mean-square
value of the data set, all data as deviations from the
average value. During data collection, probabilities are
not normally tabulated; they simply “occur” as variations
in the number of data samples in the various class inter-
vals. For finite data, the number of class intervals ob-
tained is directly proportional to the resolution of the data
samples with respect to the standard deviation.

Phase samples from the DSN doppler counter occur in
class intervals A¢ wide, all samples in the class interval
yielding the same value, KA¢, where K is the index of
the interval.

For example, in Fig. 1, without differencing, the rela-
tive contribution of the shaded area (A,) to the variance
estimate would be (assuming an infinite sample popula-
tion with ¢ = 0, and neglecting mean offset of the area)

o4(4) = (a9 [ " Pls) ds
40 = ¢ T+ 3o = D1 (6)
while the true contribution is
aa) = [ 4 P)ds G

Equations (6) and (7) show the essential error source;
errors occur because, with sample data, a single value is
used to represent the mean-square data of an entire
region, the group interval. The true variance is defined
such that the data are continuous and samples are
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“inside” the integral, squared for integration with the
corresponding probability density coordinate. There is
obviously some value of phase that could be subtracted
from 4A¢ of (6) (holding A, constant) for equivalence
with (7); such values, however, would not be static, but
would rather depend on ¢x. The “correction” is thus non-
static and must be determined as a function of the areas,
or, finally, of the variance estimate.

It is intuitive that the variance error will increase when
the probability integral is large with respect to variance.
When the limits are infinite, this integral is unity, and
the entire estimate is a single measure, which is mean-
ingless.

On the other hand, when the interval is (relatively)
small with respect to variance, the estimate and true
values asymtotically approach, for the relative change in
argument across each interval is small.

If mean-sweep is introduced, the class interval associ-
ated with a given estimate, such as 4A¢, shifts in location,
while the actual estimated angle (3, — $) takes on a
variety of values. A “weighted average” contribution to
variance thus occurs for each ¢x = KA¢ — 8¢. The model
for this estimate and its true counterpart can be expressed
in some detail by (including a nonzero initial mean)

ol = B R _ i T 1 — (N 2
; { / ) / B a0 P15 — o) do (MZ\(];)

+oo » bp-diHr+ag
= {/ [ / _ $? P() d¢>} dt} — (MN)?
- K=—o JPr-9(t)

(9)
5 =
£ _
T Ky, S~ (MT) + L0
;% > 3 [Kag — F(Mn)J / s P<¢>d¢€
M=1 K=K, br-BOHT)
— (MN)2 (10)

o4 = phase noise variance

os = estimate of oy during typical measure-
ment

¢ = phase noise deviation from mean (con-
tinuous variable)

P(¢) = probability density function of argu-
ment; commonly “normal” or “gaussian”
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K = index of resolver phase levels, modulo
B+

¢x — expression of resolver levels as incre-
mental phase deviations, A¢ wide, from
¢, the phase level nearest the nominal
mean

A¢ = ¢y increment, 3.6 deg (1.0 MHz) or 18
deg (5.0 MHz)

MN = P(¢) mean value, exclusive of ¢
r = sample interval, usually 1.0 or 0.1 s

T = total measurement period, 10 s to sev-
eral minutes

—K;, K;, = lower and upper index limits for class
intervals of obtained data

(1), $(Mr) = deviations of mean value of ¢ distribu-
tion, at time t, from nominal value. At
times Mr, the nominal (null) value is
the modulo B: bias waveform phase
within the resolver; ¢, + 8¢, = 0; (¢),
é(Mr) are presumed intentional and
known

Note that (9) differs from (10) in that(10) is not only
discrete in the mean-sweep function, but also the phase
measures {KA¢ — ¢(M+)} are again outside of the proba-
bility integral. Each set of measures therefore represents,
as before, a class interval of probability given by the class
interval integral. Conversely, (9) is exact, since ¢? is
within the integral.

Note that, in (10), many more class intervals are ob-
tained because the mean-sweep function is not constant,
but steps to various values. These intervals are not dis-
tinct but overlap; the error is not “removed,” but rather
“pseudo-averaged” to some difference value by sweeping.

Various undesirable effects mentioned earlier, but not
evident in (10), lead to actual data reduction as a differ-
encing of the sequential {Ka¢} obtained. Upon differenc-
ing, the defining expressions become somewhat intricate
multiple sums and integrals:

=gt e e svor
(MN)?

X Plgs — Bt + )] Plgy — 3(6)] dndsss dt}— |
(11)
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~y 1 r 7. K X .
%= 58T > Z > [Nag — AM(M+)]?
M:111_~KL \7~I&L
bp P MT) <00 G- BMT)+ AP
X / - P(¢.) dgp. X / _ P(¢:) dg, }
Pp P MT) P~ PMT-T)
(MN)?
9 (12)
where

AM = intentional change in mean phase during
sample period

$1,¢: = two arbitrary sequential phase measures,
taken r seconds apart

Note that the bias mean offset from ¢,, 8¢,, contained
in all ¢, is not normally known, so any mean-sweep
function will necessarily have an arbitrary zero reference,
whose effect may or may not be finally significant. Also,
if P(¢) is a stationary function about the mean, MN will
be zero upon differencing, and may be dropped.

The factor “¥%” in each expression results because the
differenced distribution variance is automatically twice
as large as the variance of the primary distribution. This
is well established and will not be covered here.

For actual machine programming, P(¢) was considered
gaussian and therefore stationary. The error-function sub-
routine, adjusted for gaussian form, was used to evaluate
the integrals. Also, (11) could feasibly be expressed as a
single integral since the difference between variates in a
gaussian distribution is itself a gaussian distribution with
doubled variance. Sweep is obviously irrelevant since it
would simply “subtract out” as an additive contribution.
However, to avoid undue complication, (12) is easier to
handle in the double-integral form, since mean-differences
cause probability changes between samples. The single-
integral form was modeled, but it was more complicated
than (11), so it was dropped in favor of the expression
as stated.

Data on available DSN hardware indicated that sinu-
soidal modulation index could be set within a tolerance of
+5%. With this in mind, a simulation program for (12)
was automated. The program routine to calculate esti-
mated sigma was:
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B =5 2 2 3 (VagrLenf (6) - erf(5)

“Kp,

« [erf (04) _ erf(e;g)] ZT f AM MT)] }1/2

[Kagp — $(Mr — 1) — 8¢0]
V2ap
6. = 0, + A6/ oy
_ UKAN)ag — ¢(Mr) — 8¢]
V20
0, = 6, + Ad)/\/??(r(,)
K, = int [6op/A¢] + 1

0, =

0 (no sweep)

&(M7) = { (M+/T) A¢ (linear sweep)
¢y sin [ 2 M=/T] (sinusoidal sweep)
R 0 (no sweep)
AM(M7z) = ! (+/T) A¢ (linear sweep; no appreciable error)
$M { sin [271' Z\[T/T] — sin [271' (MT - T)/T]}
S

#y = estimated modulation index, deg

¢y = true modulation index, deg

8¢ = initial offset, 0 < 8¢, << A (13)

Note that ¢y, the true (but unknown) modul'ltlop index,
appears in the error function integral, while ¢M, the data
reduction value, appears only in the rms correction due
to sinusoidal sweep.' Since the resolver mean offset 8¢, is
modulo A, it is evident that limiting 8¢, to a spread of
A¢ will cover all variation. An initial investigation with
machine programming of (13) alone indicated that the
error variation with modulation index ¢, tended to in-
crease when ¢, was greater than A¢ or less than about
A¢/3. Therefore, detailed investigation was limited to this
range.

An error measure was also in the program along with
a mean error (offset) calculation. These measures were

8, (Gy) =

Tp (bar,» Scboy,)

4117)1

e?mb (U‘P)' = [ 0'¢ ¢"a’ 8¢”b) —

8, (G9)) ]

(14)

(11!)1

tIn (13), this correction has been separated from the main argu-
ment for independent evaluation. This is possible upon differencing;
the cross-correlation is zero.
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Results used had the tolerance spread

m = SfOI' by = $JI>$V + 5%,$M -~ 5%
n = 4 fordp, = 0,0.9,18,2.7° (15)

where

8, (¢4) = the mean error, or average offset, between
given sigma and its estimates

the rms value of the variation in Gy for
given oy due to (uncontrollable) tolerances
in ¢y and initial values of 8¢,.

(I)Xlli (G¢)

The error statistic €’ is not a random variate but is
bounded by the tolerance excursions and their combined

effects.

Equations (14) and (15) complete the quantitative
description of the model program. The program inputs
were sigma (0g), sample interval (r), sweep repetition
period (T), and estimated modulation index (3y). The
fundamental sweep frequency was obviously /T Hz. To
avoid the region where autocorrelation effects would
possibly occur in practice, r was chosen as 1.0 s. The
period T was then set arbitrarily at 10.0 s. This yields the
lowest practical sinusoidal sweep frequency (0.1 Hz)
available at the D3N sites. A lower frequency would yield
a higher sweep resolution, obviously desirable, but not
presently feasible.

Sigma values from 0.4 to 3.0 deg were processed as the
modulation index was varied over the stated range. Also,
highly resolved linear sweep (/T = 0.01) as well as no-
sweep conditions were cycled, and the various data were
collected for analysis.

IV. Mean-Sweep Effects and Error Analysis

The error statistic €. represents a medium value of
the variation in the estimate of the error, as to be ex-
pected when measuring doppler phase-noise sigma while
sweeping. With the highly resolved linear sweep, this
error was all but undetectable. Such sweep would be
preferable to all other forms, except that it is difficult to

mechanize during coherent testing.

At the other extreme, the error with “no-sweep” was
larger than oy itself at the lower values (below 0.5 or
2.5 deg) and rendered the measure questionable until oy
was greater than 2.0 deg (or 10 deg). For sigma greater
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than these levels, sweep made little difference; the error
was negligible.

With sinusoidal sweep, the error in the region of inter-
est was less than one-fourth the no-sweep level for all
modulation indices programmed. Within this bound, how-
cver, the relative error was very sensitive to the actual
®w. The @y between 1 and 3 deg was tried, and the opti-
mum value appears to be about 1.5 deg. The error dis-
tribution with various &, was very erratic within these
small limits, but finally insignificant because of their low
absolute level. Within the measurable range, the rms
error never exceeded 0.15 deg (1.0 MHz) while sweeping
(0 = 0.4 deg), and this model level, in practice, will
undoubtedly be masked by other system contributions.

In order to facilitate easy mechanization, a modulation
index of 2.0 deg was selected for test use, as compatible
with the DSN Command Modulator Assembly (CMA)

equipment.

A typical sinusoidal-sweep error distribution of 4,
yielding €/ . and 6,, is shown in Fig. 2 as a function of 84,
and $y. The figure, for a o4 of 0.6 deg, clearly shows the
pseudo-sinusoidal nature of the error; peak error is less

than 1.5 times the rms value.

Composite error results described above are shown in
Fig. 3. Note the large error reduction in the small-sigma
range by sinusoidal sweeping as opposed to the existing
no-sweep condition. Also note the convergence of all data
at about 2 deg (or 10 deg); sweeping to improve statistics
above these levels is, as noted, superfluous.

The statistic §, in (14) is very interesting. For $y of
2 deg, the selected value 6, varies from an asymptote of
about 1.040 deg (1.0 MHz) at the higher levels of ¢4 down
to 1.023 deg at the minimum measurable level, an insig-
nificant change of only 0.017 deg across the entire field.
It obviously differs little from a constant rms offset,
apparently related to the resolver increment Ag.

With a little manipulation, the limiting value of this
offset can be shown to have a well-known quantization
error value (omitting intermediate steps):

0 1 C(K +V2) Ad
lim (6= lim > = ¥ Do) ds — o3 |
N T—> o K=—c Ad) (K -Y2) Ad

_A¢

T2 (16)
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For a¢ = 3.6 deg (1.0 MHz), this is 1.039 deg, in excel-
lent agreement with the data. Since the variation in 6,
with ¢4 is so small, the easiest correction to data is to
simply subtract the 4, limit as an rms level:

— N — /\2_% "
T T 12 (17

This is the expression recommended for DSN doppler
noise correction (with or without sweep) to account for
the finite resolver group interval error, as desired.

Vas
Tdcorrected

The final distribution of 7. with (17) and sinusoidal
sweep with ¢y = 2 deg applied (one-sigma error limits)
for no sweep is shown in Fig. 4; Gy (corrected) is the
expected range of values during DSN data reduction
when the specified sweep is used.

V. Conclusions

The primary purpose of doppler phase-noise measure-
ment is to estimate the noise content of the doppler data
obtained operationally and to assure that this noise is
within specified bounds. This discussion has concentrated
on the low-noise cases.

Operational data occurs with natural mean-sweep,
often nearly linear, as a result of relative ground-
spacecraft motion. Testing without sweep thus cannot
accurately predict the operational noise in the strong-
signal region; the estimate (as analyzed here) will nor-
mally be too variable.

In the S-band region (1.0-MHz bias) the no-sweep error
is small except for somewhat unusual conditions, normally
without operational application. Low-noise occurs, for
example, when testing under fully coherent conditions,
resulting in cancellation of exciter noise within the dop-
pler extractor. However, when such conditions are en-
countered, as during trouble-shooting, mean-sweep will
improve the residual measure (of the receiver) by reduc-
ing adverse resolver effects. Such effects have been
encountered in practice.

In the X-band region (5.0-MHz bias), system noise is
comparable to or less than resolver error without sweep.
Measure of system noise, as it occurs operationally, ap-
pears to require a correction such as that of the sweep
technique. It will remove a significant variability present
during test, but normally absent during active tracking.
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Sweep with the stated parameters reduces the rms of
the test error by as much as 4-to-1 in the applicable
region.

Independent of sweep effects, there exists a resolver
quantization offset error, unavoidable because of the in-
cremental pulse spacing. This will be present on all data,
operational and test, and is about 1 deg at S-band
(1.0 MHz) or 5 deg at X-band (5.0 MHz). If system noise
or operational data outside of counter effects are to be
measured, this offset must be removed. However, if an
operational noise estimate is to be made, this may or may
not be included as appropriate. For testing without this

effect, it is recommended that the offset be extracted from
the calculated estimate of counter input noise.

To summarize, when the bias is fixed and coherent, a
sinusoidal sweep (by exciter phase modulation), with
amplitude 2 deg and frequency 0.1 Hz, will adequately
simulate natural operational sweep. This will reduce
counter error sufficiently that meaningful results at sigma
levels below 2 deg (1 MHz)} and 10 deg (5 MHz) can be
obtained. An additional fixed resolver quantization error
of 1.039 deg (S-band) or 5.19 deg (X-band) may be sub-
tracted (variance subtraction) as desired; it is a “built in”
error on all doppler counter measures.

Definition of Symbols
(all time notation in seconds; all phase notation in cycles or degrees)

Ax  Ktharea of probability density function between
resolver levels

a index (subscript) for modulation index
bias frequency, 1.0 to 5.0 MHz
b index (subscript) for initial mean offset angle 8¢,
€, . root-mean-square error of given sigma measure

K resolver level index, resolver level phase sub-
script

K, nominal K nearest (below) bias-mean zero-
crossing

K; summation limit for K (absolute)
M discrete measurement index and subscript
m  summation limit, modulation index
N differential K on successive measures
n summation limit, initial offset phase
P(¢) probability density function notation
t time, general notation, s
t, time of measurement pulse
t. time of first positive-going zero-crossing after ¢,

T total measurement period; period of periodic
sweep

AT actual time from ¢, to ¢, in resolver

AT, mean valuc of AT, due to bias alone
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Ar resolver time increment, 10 ns

A¢ resolver phase increment Bar = 3.6 deg (1.0
MHz), 18 deg (5.0 MHz)

AM change in ¢ between successive measures
8T resolver time error in measurement of AT
8T, mean value of 8T, due to bias alone
8¢ resolver phase error in measurement of ¢,
8¢, mean value of 8¢, due to bias alone
¢ phase-noise displacement, general
¢x resolver level phase notation set

¢r total residual phase displacement from bias
mean

¢r Kag, the resolver estimate of ¢,
¢x phase modulation index during sinusoidal sweep
¢u operational estimate of ¢y

¢ intentional mean displacement of P(¢) from bias
mean; sweep function value

8, mean value of rms error between ¢4 and vy,
given (o)

r sampling interval, nominally 1 s
oy sigma (standard deviation) of ¢
7y estimate of o4 using counter data

0. corrected value of Gy, based on 4,
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Fig. 4. Corrected sigma estimate vs sigma: no-sweep and
sinusoidal sweep (mod index = 2°)
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