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ABSTRACT. — Chirped signals are well known in the context of bandwidth-efficient high-
resolution radar, but their ability to provide accurate phase and delay calibration of 
antenna arrays has not been previously explored. Here we consider using chirped pulses to 
calibrate phased antenna arrays, for both transmit and receive applications. Array 
calibration requires the estimation of carrier phase and group delay, information that is 
inherently contained in a chirped signal pulse. In this article, we examine this new 
calibration capability by developing the structure of the maximum likelihood estimator, 
and simulating its performance over a wide range of signal-to-noise rations (SNRs). The 
simulation results are compared to Cramer-Rao lower bounds on the variance of 
estimation error, for both individual and joint estimation of delay and phase. It is shown 
that chirped signals have the capability to provide accurate estimates of delay and phase 
with SNRs and integration times typically encountered in operational phased array 
applications. 

I. Introduction 

The Deep Space Network (DSN) is developing arrays of 34-m beam waveguide (BWG) 
antennas with the potential of eventually using them as an alternative to the existing 70-m 
antennas. One driver of this effort is lower cost per square meter of aperture for 34-m 
antennas compared to 70-m antennas. The question then arises, as to how 34-m antennas 
could be combined to provide a planetary radar capability comparable to the existing 
Goldstone Solar System Radar (GSSR) currently residing on the 70-m antenna at 
Goldstone, California. This radar transmits high power (100 kW to 500 kW) signals at 
X-band (8560 MHz), in various modes including continuous wave (CW), binary phase 
coded (BPC) modulation, as well as chirp modulation [1]. Its observations are used for 
planetary and asteroid studies, orbital debris studies, and recovery of lost or distressed 
spacecraft. 

In the DSN, significant progress has been made in the development of phased uplink 
arrays [2, 3, 4]. The general strategy has been to transmit from multiple 34-m BWG 
antennas simultaneously, pre-calibrating the transmissions to produce constructive 
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interference in the desired direction by illuminating a known target, and maximizing the 
arrayed signal power over the target to achieve phase calibration [2]. In various uplink 
array experiments, targets have included the Moon and the planets Mercury and Venus [3], 
as well as interplanetary spacecraft such as Extrasolar Planet Observation and Deep Impact 
Extended Investigation (EPOXI), the extended mission designation given to the Deep 
Impact spacecraft following its successful impactor mission to the comet Tempel 1 [4]. 

A key goal of arrayed transmission with N antennas is to achieve N2 increase in effective 
isotropic radiated power (EIRP), with the potential of providing greatly increased EIRP at 
lower cost than can be obtained by increasing transmitter power of the existing single-
antenna, as in the 70-m GSSR system. Such an increase in EIRP would be valuable for 
detection of smaller and more-distant radar targets, as well as high data rate 
communication with distant spacecraft. In all of these cases, estimation of signal 
parameters such as time delay and phase offset, and the dependence of the quality of those 
estimates on the SNR, is important. Here we discuss the joint estimation of time delay and 
phase for the particular case of chirp-modulated radar signals, commonly used in planetary 
radar due to their efficient use of bandwidth and ability to provide comprehensive 
information needed for rapid calibration of antenna arrays. 

II. Maximum Likelihood Estimation of Signal and Noise Parameters 

Following downconversion to complex baseband, the received signal at each antenna can 
be modeled as an N dimensional vector of complex time samples taken at integer multiples 
of the sampling interval t . The received samples can be represented as 

( ) ( ) ( ),r i t s i t n i t        where “~” denotes “complex.” Although important in deriving the 

signal model and noise statistics, the sampling interval t  will be assumed to be known in 

the subsequent analysis and hence can be suppressed, yielding the simpler representation 

i i ir s n    , where the variance of the complex noise samples is 2
n  with independent zero-

mean Gaussian real and imaginary components, each with identical variance 2 2 / 2n  . 

The vector of N received samples can now be conveniently represented in terms of signal 

and noise components as 1 2( , , , ),Nr r rr    1 2( , , , ),Ns s ss    1 2( , , , )Nn n nn    . The 

chirp signal can be expressed as 21
2exp{ [ ( ) ]},i c i is A j k t t i t      , where A is the signal 

amplitude. The noise variance 2
n  and the signal amplitude A are assumed to be known 

with the desired accuracy from previous measurements. The chirp rate parameter ck , in 

units of radians/sample, is generated by the transmitter electronics and hence is also 
known. The unknown delay   and the unknown carrier phase   are the remaining 
parameters to be estimated in this article.  

For independent noise samples, the joint probability density of the complex noise vector is 
the product of the individual noise densities, here assumed to be complex Gaussian: 

  2 2 2

1

( ) exp( | | / )
NN

n i n
i

n  




 n p . (1) 
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Given the signal parameter vector ( , ) ψ  , the joint probability density of the received 

vector, conditioned on the phase   and delay  , can be expressed as:  

  2 2 2

1

( | ) exp( | | / )
N

N

n i i n
i

r s  




  r ψ  p . (2) 

The maximum likelihood (ML) estimates of the parameters are those values that 
simultaneously maximize the conditional joint probability density in Equation 2, or 
equivalently its natural logarithm, known as the “conditional log-likelihood function”

( | ) r ψ : 

 2 * 2 2
2 2 2

1 1 1

2 1 1( | ) ln[ ( | )] ln( ) Re | | | |
N N N

n i i i i
n n ni i i

N r s s r 
    

 
        

 
  r ψ r ψ     p . (3) 

Substituting * 21
2exp[ ( ( ) )]i c is A j k t       for the locally generated conjugate signal 

samples and recognizing that 2 2| |is A , we obtain 

2
2 2 21

22 2 2
1 1

2 1( | ) ln( ) Re exp( ) exp[ ( ) ] | |
N N

n i c i i
n n ni i

A NA
N j r j k t r  

   

 
          

 
 r ψ   . 

Since we are only interested in estimating the phase   and the delay  , terms that do not 
contain these parameters in Equation 3 cannot contribute to the maximization, hence will 
be ignored. Equation 3 can now be rewritten in simplified form as 

 21
0 2

1

( | ) Re exp( ) exp[ ( ) ]
N

i c i
i

j r j k t 


 
      

 
r ψ  . (4) 

First consider the estimation of the phase,  . We recall that for any complex number z  , 

the expression  Re exp( )z j  is maximized with respect to   when we let arg( )z   , 

attaining its maximum value | |z . Letting 
21

2
1

exp[ ( ) ]
N

i c i
i

z r j k t 


     in Equation 4 and 

carrying out the maximization yields the ML estimate of phase, ̂ , at any value of the delay 
 :  

 

21
2

1

21
2

1

Im exp[ ( ) ]
ˆ arctan

Re exp[ ( ) ]

N

i c i
i

N

i c i
i

r j k t

r j k t










  
              

  








. (5) 

Substituting this estimate into the simplified log-likelihood function 0 ( | ) r ψ  maximizes 
it with respect to   for any value of  , yielding | |z , hence Equation 4 can be further 
simplified as follows: 
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 21
0 2

1

max ( | ) exp[ ( ) ]
N

i c i
i

r j k t





   r ψ  . (6) 

This last maximization can be accomplished by varying the delay  over its uncertainty 
region, and selecting that value of delay, ̂ , that maximizes Equation 6. 

The joint estimates of carrier phase and group delay can now be expressed as  

 21
0 2,

1

ˆ ˆ( , ) max ( | ) max exp[ ( ) ]
N

i c i
i

r j k t
  

  


    r ψ  . (7) 

This operation is implemented by selecting a test delay   , multiplying the i-th received 

sample ir  by the i-th locally generated chirp signal sample corresponding to the test delay, 

21
2exp[ ( ) ]c ij k t   , and evaluating the magnitude in Equation 7. This operation is 

repeated until the entire delay-uncertainty region min max( , )  , assumed to be known a 

priori, is covered with the desired delay-resolution, and the test-delay yielding the largest 
value selected as the optimal estimate of delay.  

Note that if the phase   is known a priori with great accuracy, ̂  , then it can be 
removed from Equation 4 simply by pre-multiplying the complex argument of the 

conditional log-likelihood function by ˆexp( )j , yielding 

2 21 1
0 2 2

1 1

ˆ( | ) | Re exp ( ) exp ( ) exp[ ( ) ] Re exp[ ( ) ]
N N

i c i i c i

i i

j j r j k t r j k t    
 

       
   
      
   

 r ψ    

as the function to be maximized. In other words, when the phase of the received signal is 
known, the delay estimate is obtained by varying the test delay   over the uncertainty 
region, computing the complex correlation between the received samples and the local 
reference over the entire chirp signal, taking the real part, and selecting that value of delay 
for which the log-likelihood function is the greatest: 

 21
0 2

1

ˆ max ( | ) | max Re exp[ ( ) ]
N

i c i
i

r j k t 
 



 
      

 
r ψ  . (8) 

The only difference in the estimation algorithms between the known phase and unknown 
phase case is that, with a known phase, the real part of the complex correlation is 
maximized, whereas with an unknown phase, the absolute value is maximized.  

III. Cramer-Rao Bounds on the Variance of Phase and Delay Estimation  

The variance of any unbiased estimator is lower bounded by the Cramer-Rao bound (CRB), 
which can be expressed in two distinct but equivalent forms: one involving the second 
derivative of the log-likelihood function, and another less familiar version using the square 
of the first derivative. As an illustrative example, estimation of delay (with all other 
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parameters known) would yield the following two equivalent forms for the CRB: the 
conventional form in Equation 9a, and the alternate form in Equation 9b.  

 

11 22

2
( | ) ( | )ˆ ˆa) var( ) and b) var( )  E E

    


                        

r r
 (9) 

For the joint phase and delay estimation problem considered here, the CRB can be 
determined by evaluating the components of the Fisher information matrix,  

11 12

21 22

I I

I I

 
  
 

I , where 
2

,
( | ) , 1, 2m n
m n

I E m n
 

   
 

r ψ
 

and where 1 2  and       , and E stands for the expectation operator. When neither 

parameter is known to the desired accuracy, so that joint estimation is required, the CRB 
for each component corresponds to the diagonal of the inverted Fisher information 

matrix, 1I . 

If one of the parameters is assumed to be known, so that only one parameter needs to be 
estimated, then the CRB for this single-parameter case is given by the inverse of the 
corresponding diagonal elements of the diagonal Fisher information matrix: 

1 1
11 22  for , and  for I I   . In other words, the diagonal elements represent the inverse of the 

CRB for the given parameter, assuming no coupling between parameters, or equivalently, 
assuming all other parameters are known and, hence, do not need to be estimated 
simultaneously.  

We begin by evaluating the diagonal elements of the Fisher information matrix using the 
conventional second derivative of the log-likelihood function with respect to phase, 11I , 

and the second derivative of the log-likelihood function with respect to delay, 22I . The 

conditional log-likelihood function of Equation 4 is repeated here for convenience:  

 21
0 2

1

( | ) Re exp ( ) exp[ ( ) ]
N

i c i
i

j r j k t 


 
      

 
r ψ  . (10) 

A. Conventional Form of the CRB for Single-Parameter Phase Estimation 

Carrying out the differentiation as indicated in Equation 9a, the first diagonal elements of 
the Fisher information matrix are 
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2
21

11 22 2
1

21
22

1

21
22

( | ) 2 Re exp( ) exp[ ( ) ]

2    Re exp( ) exp[ ( ) ]

2     = Re exp( ) { exp[ ( ) ]}

N

i c i
n i

N

i c i
n i

i c i
n i

A
I E E j r j k t

A
E j j r j k t

A
E j E r j k t

 
  

 


 






                   
              

  





r ψ 




1

.
N



  
      



 

Substituting the received noise-corrupted samples 21
2exp{ ( ) ]}i c i ir A j k t n      , and 

carrying out the expectation yields 

2 21 1
11 2 22

1

2
21

22 2
1

2 Re { exp[ ( ( ) )] ]exp[ ( ( ) )]}

2 2    Re ( ) exp[ ( ( ) )]     since ( ) 0.

N

c i i c i
n i

N

i c i i
n ni

A
I E A j k t n j k t

A NA
A E n j k t E n

   


 
 





  
            
  
            







 

 

If the delay is known, then the CRB for the variance of the phase estimation error is simply 
1

11I
 , hence the CRB on phase estimation for known delay becomes 

 
2 2

1
11 2 2

ˆvar( )
2

nI
NA NA

        (11) 

where 2 2 / 2n   is the common variance of the real and imaginary components of the 

complex noise sample in . 

B. Conventional Form of the CRB for Single-Parameter Delay Estimation 

Proceeding as above, the second diagonal element of the Fisher information matrix can be 
determined as follows: 

2
21

22 22 2
1

21
22

1

( | ) | 2 Re exp( ) exp[ ( ) ]

2 Re exp( ) ( ) exp[ ( ) ] .

N

i c i
n i

N

i c i c i
n i

A
I E E j r jk t

A
E j r j k t jk t

  
  

  






                   
            





r ψ 



 

Carrying out the differentiation inside the sum yields 

2 2 2 2 21 1 1
2 2 2

2 2 2 21 1
2 2

( ) exp[ ( ) ] { exp[ ( ) ] ( ) exp[ ( ) ]}

                    exp[ ( ) ] ( ) exp[ ( ) ].

c i c i c c i c i c i

c c i c i c i

j k t jk t j k jk t jk t jk t

jk jk t k t jk t

    


  

           


       
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Substituting this expression into the sum, expanding the received samples into signal plus 

noise samples as before, 2exp{ ( ) ]}i c i ir A j k t n       , and carrying out the expectation, 

yields 

 
 

21
22 22

1

21
2

2 2 2 2 21 1
1 2 2

2 2

2

2 Re ( )exp[ { ( ) }]

exp[ ( ( ) )]2= Re
exp[ ( ) ] ( ) exp{ [ ( ) ]}

2
= (

N

i c i c i
n i

N c i i

n i c c i c i c i

c

n

A
I E r j k t j k t j

A j k t nA
E

jk jk t k t j k t

A k
t

  


 

    







            
      
              









2

1

) .
N

i
i




 
  

 


 (12) 

Unlike the first diagonal element 11I , which is not a function of  , the second diagonal 

element 22I  depends on the delay  . Letting 1   sample-interval for simplicity, so that 

it i i   , and expanding out the sum in Equation 12 yields 

2 2 2 2 2 2

1 1 1 1

( 1)(2 1)
( ) ( 2 ) 2 ( 1)

6

N N N N

i

i i i i

N N N
t i i N i i N N N      

   

 
              . 

Substituting this expression for the sum in Equation 12 yields the following equation for 
the second diagonal element: 

2 2 2 2
2 2

22 2 2
1

2 2 ( 1)(2 1)( ) ( 1)
6

N
c c

in n

A k A k N N N
I i N N N  

 

              
 . 

Therefore, with all other parameters known, the CRB for the delay estimate of a chirped 
signal becomes 

 
12

1 2
22 2 2

( 1)(2 1)ˆvar( ) ( 1)
62

n

c

N N N
I N N N

A k

   


         
 

. (13) 

Note that if the residual delay   is small, such that 2 N  , then the second and third 
terms inside the bracket of Equation 13 can be ignored, in which case Equation 13 
simplifies to:  

 
12 2 2

2 2 2 2 3 2 2 3
( 1)(2 1) 3 3ˆvar( )

62 2
n n

N N
c c c

N N N

A k A k N A k N

   


 

      
 

 (14) 

where 2 2 / 2n   as before. 

C. Alternate Form of CRB for Delay 

For the problem of estimating the delay of a known signal observed in the presence of 
additive noise, the second form of the CRB shown in Equation 9b is often more 
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convenient, hence it will be used in the following derivation. Taking the derivative of the 
log-likelihood function with respect to the delay  , yields  

2 2 2
21 2 2

1 1 1

( ) ( )
( | ) [ ( )] [ ( )]

n n n

N N N
i i i i

i i i i i i i
i i i

s t s t
r s t r s t n  

   
     

            
     r  

where the last equality follows from the fact that ( )i i i ir s t n   . Substituting into 

Equation 9b, we obtain the following string of equations: 

4

4

22
4

1

2 22
24

222
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i
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j i
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E E n

s ts t s t s tA
E n n I






 

  
   



   


                           
 

                        
 



  

r

 (15) 

since ( ) 0i jE n n   due to the assumed statistical independence of the noise samples.  

Substituting into Equation 9a leads to the CRB for the error variance of any unbiased delay 
estimator: 

 

1 122 2

2
1

( )
var( ) ( | )

4

N
n i i

i

s t
E

A

   
 

 



                                
r . (16) 

D. Conventional Form of CRB for Joint Estimation of Phase and Delay 

Next, we compute the off-diagonal elements of the Fisher information matrix, 12I and 21I . 

Carrying out the differentiation as above, we have the following derivation: 

2
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12 22
1

21
22
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22

1
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N

i c i
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N
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N

i c i c i
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A
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A
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A
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             

    




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



21
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2 2 2
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2 2 ( 1)( ) ( 1).
2

N
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N
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n n ni

A
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A k A k A kN N
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   



  




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 
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 
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



 

The inverse of the two-dimensional Fisher information matrix can be found by 
exchanging the diagonal components, changing the sign of the off-diagonal elements, and 
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dividing the resulting matrix by its determinant. With 11 12

21 22

I I

I I

 
  
 

I  as above, the inverse 

of the Fisher information matrix is 22 121

21 1122 11 12 21

1 I I

I II I I I
  
    

I . 

The components of the Fisher information matrix are as follows: 

22

11 12 212 2
2 , ( 1)c

n n

A kNA
I I I N N

 
     , 

2 2

22 2
2 ( 1)(2 1)

6
c

c
n

A k N N N
I


    

 
 (conventional, 

assuming 2 N  ) as in Equation 14; and 
212

22 2
0

( )
2

N
i s

a
n i

s iTA
I








      (alternate form).  

Using the conventional form of the CRB, the products in the denominator are  

4 2 4 2 4 3 2

22 11 4 4

4 2 4 2 4 3 2
2 2

12 21 4 4

4 2 4 24 2 4

22 11 12 21 4 4

4 ( 1)(2 1) 8 12 4
6 6

6 12 6( 1)
6

2 2 ) .
6 3

c c

n n

c c

n n

c c

N
n n

NA k A kN N N N N N
I I

A k A k N N N
I I N N

A k A kN N N
I I I I

 

 

 

              
       
 

     
 

 

Substituting into the expression for the inverse of the Fisher information matrix yields the 
following expression: 

2 2 23

2 24
22 121

4 4 2 2 221 1122 11 12 21
2 2

2
( 1)

331

2( 1)

c c

n nn

c c

n n

A k A kN
N N

I I

I II I I I A N k A k NA
N N

 

 



 
 

           
  

I . 

The CRBs for joint delay and phase estimation are the diagonal elements of 1I : 

 
4 2 2 23 2

, 4 4 2 2 2 2
3 2 2 4ˆvar( )

3
n c n

c n

A k N

A N k NA NA
 

   


     (17) 

 
4 22 2

, 4 4 2 2 2 3 2 2 3 2
3 62 12ˆvar( ) n n

c n c c

NA

A N k A N k A N k
 

   


     (18) 

In order to establish their validity, the above CRBs for single-parameter and joint 
estimation of phase and delay are compared to simulation results in the next section. 
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IV. Simulation and Numerical Results

After downconversion to complex baseband, the chirp signal can be represented in terms 
of real and imaginary components as shown in Figure 1, where the solid blue curve is the 
real part and the dashed blue curve is the imaginary part of the chirp reference signal, 
respectively. This chirp signal was generated in MATLAB, along with the delay estimator 
algorithms defined in Equations 7 and 8. Both reference signals and noisy delayed received 
echo signals were simulated, and input to the ML estimator for processing. 

The delayed noisy received echo can be similarly represented in terms of real and 
imaginary components: the relationship between the reference and received noisy signals 
can be seen in terms of their respective real parts in Figure 2, where a fractional symbol 
delay of 53 samples was applied to the received symbol, as an example. 

Figure 1. Example of real (solid) and imaginary (dashed) components of the chirp reference signal. 

Figure 2. Example of real part of reference chirp signal (blue) and real part of the delayed received chirp 

signal (red), with 53 sample delay applied. 

A. Single-Parameter CRB

We consider the single-parameter estimation of delay and phase first, where the CRB for 
each parameter is the diagonal element of the Fisher information matrix. The CRB for 
phase estimation error is given by Equation 11, repeated here for convenience: 

2 2
1

11 2 2
ˆvar( )

2
nI
NA NA

       . 

Two distinct forms of the CRB have been derived for delay estimation, termed 
“conventional” and “alternate:” 
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Conventional: 
2

2 2 3
3ˆvar( )

cA k N

   ;  Alternate: 

1212

0

( )ˆvar( )
2

N
i s

i

s iT  






          
 .

The alternate form of the CRB relies on the derivative of the reference signal, which can be 
computed numerically when the reference signal is known. As an example, the I and Q 
components of the derivative of the chirp reference signal are shown in Figure 3 (solid and 
dashed green curves), with the magnitude shown as the envelope ( blue line).  

Figure 3. Derivative of real and imaginary parts (green solid and dashed curves, respectively) of reference 

signal, and absolute value (blue line) used in the alternate form of the CRB in Equation 19. 

The CRB for the joint estimation of phase and delay are given by Equations 17 and 18, 
respectively, using the conventional form of the CRB and repeated here for convenience: 

2

, 2
4ˆvar( )
NA

 
  

2

, 2 3 2
12ˆvar( )

cA N k
 

   . 

Note that joint estimation incurs a penalty of a factor of 4, or 6 dB in error variance, as can 
be seen in Figures 5 and 9 by the black dashed lines representing the CRB for phase and 
delay. 

B. Delay Estimation

The ML delay estimation algorithms for simultaneous estimation of carrier phase and 
pulse delay were implemented in MATLAB, and used to generate simulated delay estimates 
with chirp signals as input. Delay was computed as the difference between the index of the 
peak of the reference and auto-correlation functions, an example of which is shown in 
Figure 4 using a delay of 53 samples at high sample-SNR. As can be seen in Figures 1–3, 104 
samples were used per chirp pulse, and chirp parameters of 6×10−6 Hz/sample, or 
equivalently 2 (6×10−6) radians/sample were employed in the simulations. 
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Figure 4. Auto-correlation function of reference signal (blue), and cross-correlation of reference-received 

signal (red). The delay estimate is determined by differencing the indices of the peaks. 

The results of the delay estimation algorithm are shown in Figure 5. The blue asterisks are 
the simulated performance of the single-parameter delay estimator, whereas the black 
asterisks are the simulated performance of the joint delay-phase estimator. Note that a root 
mean square (rms) delay error of 0.1 sample can be achieved with a sample-SNR of 
approximately −5 dB when the phase is known, but +1 dB is required when joint estimates 
are used.  

The conventional form of the CRB given in Equation 14 is shown as the dashed red line in 
Figure 5, verifying the equivalence of the two forms of the CRB. The alternate form of the 
CRB in Equation 16 was also computed to validate the simulation results, and shown in 
the performance plot of Figure 5 as the dashed blue line superimposed on the dashed red 
line, showing equivalence of these two expressions. The conventional form of Equation 14 
employs signal parameters, including the chirp parameter ck  , the number of samples N,
signal amplitude A, and the sample noise variance used to calculate sample-SNR; hence, a 
complete mathematical description is required. The alternate form of the CRB does not 
require a complete mathematical description, relying instead on the energy in the 
derivative of the signal, hence it can be computed from a measured waveform even if a 
precise mathematical description is not available.  

Three distinct regions can be identified in Figure 5, with notably different characteristics: a 
high-SNR region where the estimators approach the CRB for the single-parameter case; a 
medium-SNR region where the estimators begin to deviate from the CRB; and a low-SNR 
region where a rapid increase in estimation error occurs, effectively rendering these 
estimates unusable. 
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Figure 5. CRB and simulation results for single-parameter delay (red and blue dashed line and blue asterisks), 

and simultaneous phase-delay estimates (black dashed line and black asterisks).

1. High-SNR region

In the high-SNR region, nominally greater than −10 dB, the rms delay errors are much less 
than 1, in other words, much smaller than the sample-interval. The delay estimates tend to 
be close to the integer input sample delay, resulting in apparently zero delay error even 
with a large number of simulations per delay estimate, when the estimates are restricted to 
be integer samples. A quadratic interpolation algorithm was therefore developed using the 
location and value of the correlation peak and its two nearest neighbors, to refine the delay 
estimates to a small fraction of a sample.  

Figure 6 shows the chirp correlation functions near the peaks, and the interpolation 
algorithm for a delay of 13 samples in the high-SNR region. Figure 6a) is a zoomed version 
of the correlation peaks, showing the two peaks separated by the integer input sample 
delay. It can be seen in Figure 6b) that the interpolated peaks (black circles) between the 
peak sample and its two nearest neighbors (red asterisks) are close to, but not exactly equal 
to the raw sample peaks. The true delay variance can now be estimated with a reasonable 
number of simulations per point, even in the high-SNR region. 



14 

Figure 6. Correlation functions and fine delay estimates in the high-SNR regime. 

2. Medium-SNR region

The slight increase in rms delay error over the CRB in the intermediate or “medium SNR” 
region between −25 dB and −10 dB seen in Figure 5 can be understood by referring to 
Figure 7. The zoomed correlation peaks in Figure 7a) show an increased impact of noise on 
the cross-correlation peak, leading to increased errors in the interpolated estimates, 
including occasional sample-level errors, as shown in Figure 7b). These occasional sample 
errors tend to increase the measured errors slightly above the CRB, as shown in Figure 5. 

Figure 7. Correlation functions and fine delay estimates in the mid-SNR region. 

3. Low-SNR region

Outliers begin to occur when the sample-SNR dips below −25 dB, causing a sudden increase 
in delay estimation error below the threshold. This effect is due to large noise spikes that 
exceed the cross-correlation peak and can occur anywhere within the delay uncertainty 
range, as can be seen in Figure 8a, where the largest cross-correlation peak is about 300 
samples from the true delay. Even a few of these large outlier spikes can increase the 
variance estimate significantly, leading to the nonlinear behavior in the low-SNR region 
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(below −25 dB) shown in Figure 5. Since the interpolation algorithm works at the cross-
correlation peak, it cannot reduce large integer-sample errors caused by outliers; hence, it 
is not effective below the threshold and cannot prevent large errors in this region. 

Figure 8. Correlation functions and fine delay estimates in the low-SNR region. 

C. Phase Estimation

The performance of the phase estimation algorithm for the single-parameter estimates of 
Equation 11 and those obtained from the joint phase-delay estimator of Equation 17, are 
shown in Figure 9. The single-parameter estimates are obtained in the simulation by taking 
the arc-tangent of the ratio of the imaginary part to the real part of the cross-correlation 
between the received signal and the reference, at the known delay, 0 :
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





  
        

         








. (19)

The results are shown in Figure 9 as the blue asterisks, virtually superimposed on the CRB 
for the known delay case given by Equation 11, above a sample-SNR of −20 dB. In the 
simulation, 104 samples were used per chirp pulse, and the chirp rate was set to 6×10−6 Hz/ 
sample as before. Note that the phase estimates also exhibit thresholding below a sample-
SNR of −25 dB, similar to the delay estimates shown in Figure 5, with a maximum standard 
deviation of approximately 2 radians.  

When the delay is not known, the phase and delay must be estimated simultaneously 
according to Equation 17. The resulting estimates are shown as black asterisks in Figure 9, 
again in excellent agreement with the CRB for joint phase-delay estimates given by Equation 
17. It can be seen that phase estimates of approximately one tenth of a radian can be 
achieved with a sample-SNR of −20 dB when the delay is known, and roughly −14 dB with 
joint estimation, when the chirp pulses are sampled at a rate of 104 samples/pulse.
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Figure 9. CRB and simulation results for single-parameter phase (blue dashed line and asterisks), and 

simultaneous phase-delay estimates (black dashed line and asterisks).

The results for carrier phase and delay estimation error shown in Figures 4 and 9 can be 
converted to familiar engineering units by considering a specific sampling rate in terms of 
samples per second. As an example, consider a sampling rate of 106 samples per second, 
yielding a total integration time of 0.01 second, or 10 milliseconds, for a chirped pulse 
with 104 samples per pulse. Reading directly from Figure 9, it can be seen that, with joint 
estimation, carrier phase can be estimated with an rms error of 0.1 radian at a sample-SNR 
of approximately −14 dB. Using a factor of 104, or 40 dB, to convert sample-SNR to pulse-
SNR, it follows that 26 db of pulse-SNR is required to achieve 0.1 radian phase error with 
joint estimation. Similarly, from Figure 4, it can be seen that this would result in a delay 
estimation error of less than 1 sample on the average, which may be adequate for group-
delay in many applications. The required integration times are in fact so short that 
continuous calibration, or tracking of the array phase may be possible with roughly 
10 millisecond updates, potentially enabling real-time compensation for tropospheric 
fluctuations that could degrade phased array performance at microwave frequencies. 
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V. Summary and Conclusions 

The application of chirped signals to phased array calibration was addressed in this paper, 
incorporating the concept of joint estimation of carrier phase and pulse delay. The 
structure of the ML estimators was derived, and their performance evaluated via 
simulation under a wide range of SNRs. The CRBs on estimator performance were also 
derived and used to validate the simulation results. It was found that the joint estimator 
performs close to the CRB at high SNRs, but begins to degrade and eventually fail at very 
low sample-SNR, as expected. Three distinct SNR regions were identified and analyzed to 
explain estimator behavior at low, medium, and high SNR. It was shown that the proposed 
estimator structure enables rapid calibration and even continuous tracking of array phase 
and group delay, enabling real-time compensation for tropospheric fluctuations in 
addition to initial calibration of phased arrays, under conditions typical of DSN 
operations. 
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